This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A023007 Number of partitions of n into parts of 8 kinds. 3
 1, 8, 44, 192, 726, 2464, 7704, 22528, 62337, 164560, 417140, 1020416, 2418710, 5573568, 12520744, 27484160, 59068372, 124505880, 257770964, 524871424, 1052316364, 2079491744, 4053978040, 7803219968, 14840711765, 27907041392, 51917588800, 95608651776 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is Euler transform of A010731. - Alois P. Heinz, Oct 17 2008 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz) Roland Bacher, P. De La Harpe, Conjugacy growth series of some infinitely generated groups, 2016, hal-01285685v2. P. Nataf, M. Lajkó, A. Wietek, K. Penc, F. Mila, A. M. Läuchli, Chiral spin liquids in triangular lattice SU (N) fermionic Mott insulators with artificial gauge fields, arXiv preprint arXiv:1601.00958 [cond-mat.quant-gas], 2016. N. J. A. Sloane, Transforms FORMULA a(n) ~ exp(4 * Pi * sqrt(n/3)) / (sqrt(2) * 3^(9/4) * n^(11/4)). - Vaclav Kotesovec, Feb 28 2015 a(0) = 1, a(n) = (8/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017 G.f.: exp(8*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018 MAPLE with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*8, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Oct 17 2008 MATHEMATICA nmax=50; CoefficientList[Series[Product[1/(1-x^k)^8, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 28 2015 *) CROSSREFS Cf. 8th column of A144064. - Alois P. Heinz, Oct 17 2008 Sequence in context: A160521 A277958 A283077 * A169795 A073380 A273603 Adjacent sequences:  A023004 A023005 A023006 * A023008 A023009 A023010 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 09:29 EDT 2019. Contains 328056 sequences. (Running on oeis4.)