login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023008 Number of partitions of n into parts of 9 kinds. 2
1, 9, 54, 255, 1035, 3753, 12483, 38709, 113265, 315445, 841842, 2164185, 5382276, 12994290, 30543210, 70066809, 157199805, 345552183, 745377215, 1579915080, 3294664578, 6766656315, 13700560491, 27370137195, 53991639855, 105242612526, 202837976145 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) is Euler transform of A010734. - Alois P. Heinz, Oct 17 2008

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)

P. Nataf, M. Lajkó, A. Wietek, K. Penc, F. Mila, A. M. Läuchli, Chiral spin liquids in triangular lattice SU (N) fermionic Mott insulators with artificial gauge fields, arXiv preprint arXiv:1601.00958 [cond-mat.quant-gas], 2016.

N. J. A. Sloane, Transforms

Index entries for expansions of Product_{k >= 1} (1-x^k)^m

FORMULA

a(n) ~ 3^(5/2) * exp(Pi * sqrt(6*n)) / (256 * n^3). - Vaclav Kotesovec, Feb 28 2015

a(0) = 1, a(n) = (9/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017

G.f.: exp(9*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

MAPLE

with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*9, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Oct 17 2008

MATHEMATICA

nmax=50; CoefficientList[Series[Product[1/(1-x^k)^9, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 28 2015 *)

CROSSREFS

Cf. 9th column of A144064. - Alois P. Heinz, Oct 17 2008

Sequence in context: A289254 A059597 A282920 * A079817 A169796 A027472

Adjacent sequences:  A023005 A023006 A023007 * A023009 A023010 A023011

KEYWORD

nonn

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 21 04:40 EDT 2019. Contains 325189 sequences. (Running on oeis4.)