login
A022731
Expansion of Product_{m>=1} 1/(1 - m*q^m)^7.
2
1, 7, 42, 203, 889, 3535, 13209, 46551, 156905, 507787, 1588594, 4819003, 14231294, 41007134, 115589904, 319284693, 865781826, 2307766118, 6054769679, 15652436765, 39909873983, 100451866962
OFFSET
0,2
LINKS
FORMULA
G.f.: exp(7*Sum_{j>=1} Sum_{k>=1} k^j*x^(j*k)/j). - Ilya Gutkovskiy, Feb 07 2018
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^-7, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Jul 25 2018 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1-n*q^n)^-7)) \\ G. C. Greubel, Jul 25 2018
(Magma) n:=50; R<x>:=PowerSeriesRing(Integers(), n); Coefficients(R!(&*[(1/(1-m*x^m))^7:m in [1..n]])); // G. C. Greubel, Jul 25 2018
CROSSREFS
Column k=7 of A297328.
Sequence in context: A094429 A246434 A255614 * A092072 A319890 A319871
KEYWORD
nonn
STATUS
approved