login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022330
Index of 3^n within sequence of numbers of form 2^i*3^j (A003586).
13
1, 3, 7, 12, 19, 27, 37, 49, 62, 77, 93, 111, 131, 152, 175, 199, 225, 252, 281, 312, 344, 378, 413, 450, 489, 529, 571, 614, 659, 705, 753, 803, 854, 907, 961, 1017, 1075, 1134, 1195, 1257, 1321, 1386, 1453, 1522, 1592, 1664, 1737, 1812, 1889, 1967, 2047, 2128
OFFSET
0,2
COMMENTS
a(1000)=793775, a(10000)=79261054, a(100000)=7924941755, a(1000000)=792482542841.
LINKS
Zak Seidov, Table of n, a(n) for n = 0..10000 (terms for n = 0..1000 from Charles R Greathouse IV).
N. Carey, Lambda Words: A Class of Rich Words Defined Over an Infinite Alphabet, arXiv preprint arXiv:1303.0888 [math.CO], 2013.
FORMULA
a(n) = A071521(A000244(n)); A003586(a(n)) = A000244(n). - Reinhard Zumkeller, May 09 2006
a(n) ~ kn^2 with k = log(3)/log(4) = 0.792.... More exact asymptotics? - Zak Seidov, Dec 22 2011
a(n+1) = a(n) + A020914(n+1). - Ruud H.G. van Tol, Nov 25 2022
kn^2 + kn + 1 <= a(n) <= kn^2 + (k+1)n + 1, so a(n) = kn^2 + O(n) with k = log(3)/log(4). The law of the iterated logarithm suggests that a better error term might be possible. - Charles R Greathouse IV, Nov 28 2022
MATHEMATICA
c[0] = 1; c[n_] := 1 + Sum[Ceiling[j*Log[2, 3]], {j, n}]; Table[c[i], {i, 0, 51}] (* Norman Carey, Jun 13 2012 *)
PROG
(PARI) listsm(lim)=my(v=List(), N); for(n=0, log(lim)\log(3), N=3^n; while(N<=lim, listput(v, N); N<<=1)); v=Vec(v); vecsort(v)
list(lim)=my(v=listsm(3^floor(lim))); vector(floor(lim+1), i, setsearch(v, 3^(i-1))) \\ Charles R Greathouse IV, Aug 19 2011
(PARI) a(n)=sum(k=0, n, logint(3^k, 2))+n+1 \\ Charles R Greathouse IV, Nov 22 2022
(Python)
def A022330(n): return sum((3**i).bit_length() for i in range(n+1)) # Chai Wah Wu, Sep 16 2024
CROSSREFS
Cf. A022331, A020914 (first differences).
Sequence in context: A006317 A194147 A077043 * A303279 A024219 A371701
KEYWORD
nonn
STATUS
approved