login
A022321
a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 7.
1
1, 7, 9, 17, 27, 45, 73, 119, 193, 313, 507, 821, 1329, 2151, 3481, 5633, 9115, 14749, 23865, 38615, 62481, 101097, 163579, 264677, 428257, 692935, 1121193, 1814129, 2935323, 4749453, 7684777, 12434231
OFFSET
0,2
FORMULA
From R. J. Mathar, Apr 07 2011: (Start)
G.f.: (1+5*x-5*x^2)/((1-x)*(1-x-x^2)).
a(n) = 2*A000285(n) - 1. (End)
a(n) = 2*F(n+2) + 4*F(n) - 1, where F = A000045. - G. C. Greubel, Aug 25 2017
MATHEMATICA
a[0]=1; a[1]=7; a[n_]:=a[n]=a[n-1]+a[n-2]+1; Table[a[n], {n, 0, 40}] (* Harvey P. Dale, Jan 23 2011 *)
PROG
(PARI) x='x+O('x^50); Vec((1+5*x-5*x^2)/((1-x)*(1-x-x^2))) \\ G. C. Greubel, Aug 25 2017
CROSSREFS
Sequence in context: A250292 A140364 A366526 * A194830 A183344 A255830
KEYWORD
nonn
STATUS
approved