This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022319 a(n) = a(n-1) + a(n-2) + 1 for n>1, a(0)=1, a(1)=5. 6
 1, 5, 7, 13, 21, 35, 57, 93, 151, 245, 397, 643, 1041, 1685, 2727, 4413, 7141, 11555, 18697, 30253, 48951, 79205, 128157, 207363, 335521, 542885, 878407, 1421293, 2299701, 3720995, 6020697, 9741693 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,0,-1). FORMULA a(n) = Fibonacci(n) + Fibonacci(n+6) - 1, n>=-2 - Zerinvary Lajos, Feb 01 2008 From R. J. Mathar, Apr 07 2011: (Start) G.f. (1 +3*x -3*x^2) / ((1-x)*(1 -x -x^2)). a(n) = A022112(n) - 1. (End) MAPLE with(combinat): seq(fibonacci(n)+fibonacci(n+6)-1, n=-2..29); - Zerinvary Lajos, Feb 01 2008 MATHEMATICA LinearRecurrence[{2, 0, -1}, {1, 5, 7}, 40] (* Harvey P. Dale, Nov 19 2014 *) PROG (Haskell) a022319 n = a022319_list !! (n-1) a022319_list = 1 : 5 : zipWith (+)    (map (+ 1) a022319_list) (tail a022319_list) -- Reinhard Zumkeller, May 26 2013 (PARI) x='x+O('x^50); Vec((1 +3*x -3*x^2)/((1-x)*(1 -x -x^2))) \\ G. C. Greubel, Aug 25 2017 CROSSREFS Cf. A192762 (partial sums). Sequence in context: A224789 A078884 A154872 * A207079 A167798 A165815 Adjacent sequences:  A022316 A022317 A022318 * A022320 A022321 A022322 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.