login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A020650 Numerators in recursive bijection from positive integers to positive rationals (the bijection is f(1) = 1, f(2n) = f(n)+1, f(2n+1) = 1/(f(n)+1)). 14
1, 2, 1, 3, 1, 3, 2, 4, 1, 4, 3, 5, 2, 5, 3, 5, 1, 5, 4, 7, 3, 7, 4, 7, 2, 7, 5, 8, 3, 8, 5, 6, 1, 6, 5, 9, 4, 9, 5, 10, 3, 10, 7, 11, 4, 11, 7, 9, 2, 9, 7, 12, 5, 12, 7, 11, 3, 11, 8, 13, 5, 13, 8, 7, 1, 7, 6, 11, 5, 11, 6, 13, 4, 13, 9, 14, 5, 14, 9, 13, 3, 13, 10, 17, 7, 17, 10, 15, 4, 15, 11, 18, 7, 18 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The fractions are given in their reduced form, thus gcd(a(n), A020651(n)) = 1 for all n. - Antti Karttunen, May 26 2004

From Yosu Yurramendi, Jul 13 2014 : (Start)

If the terms (n>0) are written as an array (left-aligned fashion) with rows of length 2^m, m = 0,1,2,3,...

1,

2,1,

3,1,3,2,

4,1,4,3,5,2,5,3,

5,1,5,4,7,3,7,4, 7,2, 7,5, 8,3, 8,5,

6,1,6,5,9,4,9,5,10,3,10,7,11,4,11,7,9,2,9,7,12,5,12,7,11,3,11,8,13,5,13,8,

then the sum of the m-th row is 3^m (m = 0,1,2,), and each column is an arithmetic sequence.

If the rows are written in a right-aligned fashion:

                                                                        1,

                                                                      2,1,

                                                                 3,1, 3,2,

                                                       4,1, 4,3, 5,2, 5,3,

                                    5,1,5,4, 7,3, 7,4, 7,2, 7,5, 8,3, 8,5,

6,1,6,5,9,4,9,5,10,3,10,7,11,4,11,7,9,2,9,7,12,5,12,7,11,3,11,8,13,5,13,8,

each column k is a Fibonacci sequence.

(End)

a(n2^m+1) = a(2n+1), n > 0, m > 0. - Yosu Yurramendi, Jun 04 2016

LINKS

T. D. Noe, Table of n, a(n) for n=1..10000

FORMULA

a(1) = 1, a(2n) = a(n)+A020651(n), a(2n+1) = A020651(2n) = A020651(n). - Antti Karttunen, May 26 2004

a(2n) = A020651(2n+1). - Yosu Yurramendi, Jul 17 2014

EXAMPLE

1, 2, 1/2, 3, 1/3, 3/2, 2/3, 4, 1/4, 4/3, ...

MAPLE

A020650 := n -> `if`((n < 2), n, `if`(type(n, even), A020650(n/2)+A020651(n/2), A020651(n-1)));

MATHEMATICA

f[1] = 1; f[n_?EvenQ] := f[n] = f[n/2]+1; f[n_?OddQ] := f[n] = 1/(f[(n-1)/2]+1); a[n_] := Numerator[f[n]]; Table[a[n], {n, 1, 94}] (* Jean-François Alcover, Nov 22 2011 *)

a[1]=1; a[2]=2; a[3]=1; a[n_] := a[n] = Switch[Mod[n, 4], 0, a[n/2+1] + a[n/2], 1, a[(n-1)/2+1], 2, a[(n-2)/2+1] + a[(n-2)/2], 3, a[(n-3)/2]]; Array[a, 100] (* Jean-François Alcover, Jan 22 2016, after Yosu Yurramendi *)

PROG

(Haskell)

import Data.List (transpose); import Data.Ratio (numerator)

a020650_list = map numerator ks where

   ks = 1 : concat (transpose [map (+ 1) ks, map (recip . (+ 1)) ks])

-- Reinhard Zumkeller, Feb 22 2014

(R)

N <- 25 # arbitrary

a <- c(1, 2, 1)

for(n in 1:N){

  a[4*n]   <- a[2*n] + a[2*n+1]

  a[4*n+1] <-          a[2*n+1]

  a[4*n+2] <- a[2*n] + a[2*n+1]

  a[4*n+3] <- a[2*n]

}

a

# Yosu Yurramendi, Jul 13 2014

CROSSREFS

Cf. A020651.

Bisection: A086592.

Sequence in context: A144079 A071575 A038569 * A124224 A014599 A274771

Adjacent sequences:  A020647 A020648 A020649 * A020651 A020652 A020653

KEYWORD

nonn,easy,frac,nice

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 00:45 EST 2016. Contains 278959 sequences.