login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020519
11th cyclotomic polynomial evaluated at powers of 2.
1
11, 2047, 1398101, 1227133513, 1172812402961, 1162219258676257, 1171221845949812801, 1189887617730934227073, 1213666705181745367548161, 1240362622532514091484054017, 1268889750375080065623288448001, 1298708349570020393652962442872833
OFFSET
0,1
LINKS
Quynh Nguyen, Jean Pedersen, and Hien T. Vu, New Integer Sequences Arising From 3-Period Folding Numbers, Vol. 19 (2016), Article 16.3.1. Cites this sequence.
FORMULA
G.f.: -(72022409665839104*x^10 -95936100375199744*x^9 +41035167933923328*x^8 -7266644321632256*x^7 +581441424424960*x^6 -21804053415936*x^5 +388080675136*x^4 -3261182144*x^3 +12564486*x^2 -20470*x +11) / ((x -1)*(2*x -1)*(4*x -1)*(8*x -1)*(16*x -1)*(32*x -1)*(64*x -1)*(128*x -1)*(256*x -1)*(512*x -1)*(1024*x -1)). - Colin Barker, Feb 14 2015
a(n) = 1+2^n+4^n+8^n+16^n+32^n+64^n+128^n+256^n+512^n+1024^n. - Colin Barker, Feb 15 2015
a(n) = A060885(A000079(n)). - Michel Marcus, Apr 06 2016
MAPLE
with(numtheory, cyclotomic):seq(cyclotomic(11, 2^i), i=0..24);
MATHEMATICA
Table[Total[x^Range[0, 10]], {x, 2^Range[0, 10]}] (* Harvey P. Dale, Mar 05 2014 *)
PROG
(PARI) a(n) = polcyclo(11, 2^n); \\ Michel Marcus, Apr 12 2014
CROSSREFS
Sequence in context: A167249 A180587 A060885 * A004822 A265876 A078271
KEYWORD
nonn,easy
AUTHOR
STATUS
approved