login
A020517
9th cyclotomic polynomial evaluated at powers of 2.
1
3, 73, 4161, 262657, 16781313, 1073774593, 68719738881, 4398048608257, 281474993487873, 18014398643699713, 1152921505680588801, 73786976303428141057, 4722366482938364690433, 302231454904207049490433, 19342813113838464841809921, 1237940039285415459271213057
OFFSET
0,1
FORMULA
From Colin Barker, Feb 15 2015: (Start)
a(n) = 1+8^n+64^n.
a(n) = 73*a(n-1)-584*a(n-2)+512*a(n-3).
G.f.: -(584*x^2-146*x+3) / ((x-1)*(8*x-1)*(64*x-1)).
(End)
MAPLE
with(numtheory, cyclotomic):seq(cyclotomic(9, 2**i), i=0..24);
MATHEMATICA
Cyclotomic[9, 2^Range[0, 20]] (* Paolo Xausa, Sep 16 2024 *)
PROG
(PARI) a(n) = polcyclo(9, 2^n) \\ Colin Barker, Feb 15 2015
CROSSREFS
Sequence in context: A363984 A012810 A364300 * A119017 A364116 A307232
KEYWORD
nonn,easy
AUTHOR
STATUS
approved