login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A020053 a(n) = floor(Gamma(n + 7/11)/Gamma(7/11)). 2

%I

%S 1,0,1,2,9,46,260,1731,13220,114177,1100259,11702761,136177584,

%T 1720789475,23465311032,343446825119,5370259447316,89341588987179,

%U 1575660751228445,29364586727439203,576613703011533457

%N a(n) = floor(Gamma(n + 7/11)/Gamma(7/11)).

%H G. C. Greubel, <a href="/A020053/b020053.txt">Table of n, a(n) for n = 0..449</a>

%e Gamma(7/11) = 1.411339...

%e Gamma(1 + 7/11)/Gamma(7/11) = 7/11 = 0.636363636..., so a(1) = 0.

%e Gamma(2 + 7/11)/Gamma(7/11) = 126/121 = 1.041322314..., so a(2) = 1.

%p Digits := 64:f := proc(n,x) trunc(GAMMA(n+x)/GAMMA(x)); end;

%p seq(floor(pochhammer(7/11,n)), n = 0..25); # _G. C. Greubel_, Nov 30 2019

%t Table[Floor[Gamma[n + 7/11]/Gamma[7/11]], {n, 0, 29}] (* _Alonso del Arte_, Jun 13 2018 *)

%t Floor[Pochhammer[7/11, Range[0, 25]]] (* _G. C. Greubel_, Nov 30 2019 *)

%o (PARI) a(n) = gamma(n + 7/11)\gamma(7/11); \\ _Michel Marcus_, Jun 21 2018

%o (MAGMA) [Floor(Gamma(n+7/11)/Gamma(7/11)): n in [0..25]]; // _G. C. Greubel_, Nov 30 2019

%o (Sage) [floor(rising_factorial(7/11, n)) for n in (0..25)] # _G. C. Greubel_, Nov 30 2019

%Y Cf. A020008, A020098.

%K nonn

%O 0,4

%A _Simon Plouffe_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 11 12:00 EDT 2021. Contains 342886 sequences. (Running on oeis4.)