login
A020053
a(n) = floor(Gamma(n + 7/11)/Gamma(7/11)).
2
1, 0, 1, 2, 9, 46, 260, 1731, 13220, 114177, 1100259, 11702761, 136177584, 1720789475, 23465311032, 343446825119, 5370259447316, 89341588987179, 1575660751228445, 29364586727439203, 576613703011533457
OFFSET
0,4
LINKS
EXAMPLE
Gamma(7/11) = 1.411339...
Gamma(1 + 7/11)/Gamma(7/11) = 7/11 = 0.636363636..., so a(1) = 0.
Gamma(2 + 7/11)/Gamma(7/11) = 126/121 = 1.041322314..., so a(2) = 1.
MAPLE
Digits := 64:f := proc(n, x) trunc(GAMMA(n+x)/GAMMA(x)); end;
seq(floor(pochhammer(7/11, n)), n = 0..25); # G. C. Greubel, Nov 30 2019
MATHEMATICA
Table[Floor[Gamma[n + 7/11]/Gamma[7/11]], {n, 0, 29}] (* Alonso del Arte, Jun 13 2018 *)
Floor[Pochhammer[7/11, Range[0, 25]]] (* G. C. Greubel, Nov 30 2019 *)
PROG
(PARI) a(n) = gamma(n + 7/11)\gamma(7/11); \\ Michel Marcus, Jun 21 2018
(Magma) [Floor(Gamma(n+7/11)/Gamma(7/11)): n in [0..25]]; // G. C. Greubel, Nov 30 2019
(Sage) [floor(rising_factorial(7/11, n)) for n in (0..25)] # G. C. Greubel, Nov 30 2019
CROSSREFS
Sequence in context: A340942 A270386 A181997 * A114194 A218045 A161798
KEYWORD
nonn
AUTHOR
STATUS
approved