login
A019845
Decimal expansion of sine of 36 degrees.
19
5, 8, 7, 7, 8, 5, 2, 5, 2, 2, 9, 2, 4, 7, 3, 1, 2, 9, 1, 6, 8, 7, 0, 5, 9, 5, 4, 6, 3, 9, 0, 7, 2, 7, 6, 8, 5, 9, 7, 6, 5, 2, 4, 3, 7, 6, 4, 3, 1, 4, 5, 9, 9, 1, 0, 7, 2, 2, 7, 2, 4, 8, 0, 7, 5, 7, 2, 7, 8, 4, 7, 4, 1, 6, 2, 3, 5, 1, 9, 5, 7, 5, 0, 8, 5, 0, 4, 0, 4, 9, 8, 6, 2, 7, 4, 1, 3, 3, 5
OFFSET
0,1
COMMENTS
This sequence is also decimal expansion of cosine of 54 degrees. - Mohammad K. Azarian, Jun 29 2013
The ratio of side to longer diagonal for any golden rhombus (see A019881). - Rick L. Shepherd, Apr 10 2017
Perimeter length of a regular pentagon with circumscribed unit circle. - R. J. Mathar, Aug 24 2023
FORMULA
sin 36 degrees = sin Pi/5 radians = sqrt((1/8)(5 - sqrt(5))).
Equals A019881/A001622. - Rick L. Shepherd, Apr 10 2017
This constant is (1/2)*A182007. - Wolfdieter Lang, May 08 2018
Equals 2*A019827*A019881. - R. J. Mathar, Jan 17 2021
Equals 5*A182007. - R. J. Mathar, Aug 24 2023
EXAMPLE
sin 36 degrees = 0.587785252292473129168705954639...
MATHEMATICA
RealDigits[Sin[Pi/5], 10, 100][[1]] (* Alonso del Arte, Sep 19 2017 *)
RealDigits[Sin[36 Degree], 10, 120][[1]] (* Harvey P. Dale, Aug 14 2018 *)
PROG
(PARI) sin(Pi/5) \\ Michel Marcus, Apr 25 2015
(PARI) cos(3*Pi/10) \\ Rick L. Shepherd, Apr 10 2017
(PARI) real(I^(3/5)) \\ Rick L. Shepherd, Apr 10 2017
CROSSREFS
Cf. A019827 (sine of 18 degrees), A019881 (sine of 72 degrees), A001622 (golden ratio phi). A182007.
Sequence in context: A230366 A358361 A197415 * A374171 A357838 A143618
KEYWORD
nonn,cons,easy
STATUS
approved