OFFSET
0,2
COMMENTS
Apparently also the number of distinct squares reachable by the (1,3)-leaper in at most n moves. - R. J. Mathar, Jan 05 2018
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Erich Friedman, Illustration of initial terms
A. M. Miller and D. L. Farnsworth, Counting the Number of Squares Reachable in k Knight's Moves, Open Journal of Discrete Mathematics, 2013, 3, 151-154
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: (1+5*x+12*x^2-8*x^4+4*x^5)*(1+x)/(1-x)^3;
a(n) = 1-6*n+14*n^2+4*sign(n*(n-1)*(n-3)). - Zak Seidov, Mar 01 2005
MAPLE
(1 + 5*x + 12*x^2 - 8*x^4 + 4*x^5)*(1+x)/(1-x)^3; seq(coeff(series(%, x, n+1), x, n), n=0..50);
MATHEMATICA
Table[1-6 n+14 n^2+4 Sign[n(n-1)(n-3)], {n, 0, 50}] (* Zak Seidov *)
Join[{1, 9, 41, 109}, LinearRecurrence[{3, -3, 1}, {205, 325, 473}, 50]] (* Harvey P. Dale, Aug 16 2011 *)
CoefficientList[Series[(1 + 5*x + 12*x^2 - 8*x^4 + 4*x^5)*(1 + x)/(1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 26 2012 *)
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved