

A095809


Least positive number having exactly n partitions into three squares.


5



1, 9, 41, 81, 146, 194, 306, 369, 425, 594, 689, 866, 1109, 1161, 1154, 1361, 1634, 1781, 1889, 2141, 2729, 2609, 3626, 3366, 3566, 3449, 3506, 4241, 4289, 4826, 5066, 5381, 7034, 5561, 6254, 7229, 7829, 8186, 8069, 8126, 8609, 8921, 8774, 10386
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Note that a square can be zero.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200


EXAMPLE

41 is the least number having three partitions: 41 = 0+16+25 = 1+4+36 = 9+16+16.


MATHEMATICA

lim=200; nLst=Table[0, {lim^2}]; Do[n=a^2+b^2+c^2; If[n>0 && n<lim^2, nLst[[n]]++ ], {a, 0, lim}, {b, a, Sqrt[lim^2a^2]}, {c, b, Sqrt[lim^2a^2b^2]}]; u=Union[nLst]; kMax=First[Complement[1+Range[u[[ 1]]], u]]1; Table[First[Flatten[Position[nLst, k]]], {k, kMax}]


CROSSREFS

Apart from initial term, same as A000437.
Cf. A094739 (n having a unique partition into three squares), A095811 (greatest number having exactly n partitions into three squares).
Sequence in context: A198943 A000451 A000437 * A273359 A251422 A018836
Adjacent sequences: A095806 A095807 A095808 * A095810 A095811 A095812


KEYWORD

nonn


AUTHOR

T. D. Noe, Jun 07 2004


STATUS

approved



