OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..500
Index entries for linear recurrences with constant coefficients, signature (17,-86,112).
FORMULA
a(n) = 4*8^(n+1)/3 - 7^(n+2)/5 + 2^(n+1)/15. - R. J. Mathar, Mar 14 2011
From Vincenzo Librandi, Sep 02 2011: (Start)
a(n) = (160*8^n - 147*7^n + 2*2^n)/15;
a(n) = 15*a(n-1) - 56*a(n-2) + 2^n. (End)
a(n) = 17*a(n-1) - 86*a(n-2) + 112*a(n-3), with a(0)=1, a(1)=17, a(2)=203. - Harvey P. Dale, Jul 12 2012
MATHEMATICA
CoefficientList[Series[1/((1-2x)(1-7x)(1-8x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{17, -86, 112}, {1, 17, 203}, 30] (* Harvey P. Dale, Jul 12 2012 *)
PROG
(Sage) [(8^n - 2^n)/6-(7^n - 2^n)/5 for n in range(2, 21)] # Zerinvary Lajos, Jun 05 2009
(Magma) [(160*8^n-147*7^n+2*2^n)/15: n in [0..20]]; // Vincenzo Librandi, Sep 02 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved