login
A016308
Expansion of 1/((1-2*x)*(1-6*x)*(1-11*x)).
1
1, 19, 261, 3191, 37037, 419055, 4679557, 51894967, 573363933, 6322119551, 69634013813, 766518346503, 8434966982989, 92804227849807, 1020964052585829, 11231309855904599, 123548640079779005
OFFSET
0,2
FORMULA
From Vincenzo Librandi, Sep 02 2011: (Start)
a(n) = (5*2^n - 81*6^n + 121*11^n)/45.
a(n) = 19*a(n-1) - 100*a(n-2) + 132*a(n-3) for n > 2.
a(n) = 17*a(n-1) - 66*a(n-2) + 2^n. (End)
G.f.: 1 + 855*x/(Q(0)-855*x), where Q(k) = x*(10*2^k - 486*6^k + 1331*11^k) + 5*2^k - 81*6^k + 121*11^k - x*(5*2^k - 81*6^k + 121*11^k)*(20*2^k - 2916*6^k + 14641*11^k)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 02 2014
PROG
(Magma) [(5*2^n-81*6^n+121*11^n)/45: n in [0..20]]; // Vincenzo Librandi, Sep 02 2011
CROSSREFS
Sequence in context: A016313 A335515 A017917 * A014923 A081036 A244652
KEYWORD
nonn,easy
STATUS
approved