This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A016017 Smallest k such that 1/k can be written as a sum of exactly 2 unit fractions in n ways. 8
 1, 2, 4, 8, 6, 32, 64, 12, 256, 512, 24, 2048, 36, 30, 16384, 32768, 96, 72, 262144, 192, 1048576, 2097152, 60, 8388608, 216, 768, 67108864, 288, 1536, 536870912, 1073741824, 120, 576, 8589934592, 6144, 34359738368, 68719476736, 180, 864 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n+1) <= 2^n. LINKS David W. Wilson, Table of n, a(n) for n = 1..1000 FORMULA From Labos Elemer, May 22 2001: (Start) a(n) = sqrt(A061283(n)). a(n) = sqrt(Min{k| A000005(k)=2n-1}). a(p) = 2^((p-1)/2) = 2^A005097(i) if p is the i-th prime. (End) a(n) is the least k such that (tau(k^2) + 1)/2 = n. - Vladeta Jovovic, Aug 01 2001 EXAMPLE a(1)=1 and a(2)=2 because 1/2 = 1/3 + 1/6 = 1/4 + 1/4. a(3)=4 because 1/4 = 1/5 + 1/20 = 1/6 + 1/12 = 1/8 + 1/8. a(4)=8 because 1/8 = 1/9 + 1/72 = 1/10 + 1/40 = 1/12 + 1/24 = 1/16 + 1/16. a(5)=6 because 1/6 = 1/7 + 1/42 = 1/8 + 1/24 = 1/9 + 1/18 = 1/10 + 1/15 = 1/12 + 1/12. MATHEMATICA f[j_, n_] := (Times @@ (j(Last /@ FactorInteger[n]) + 1) + j - 1)/j; t = Table[0, {50}]; Do[a = f[2, n]; If[a < 51 && t[[a]] == 0, t[[a]] = n; Print[{a, n}]], {n, 2^30}] (* Robert G. Wilson v, Aug 03 2005 *) PROG (PARI) a(n) = {k = 1; while (numdiv(k^2) != (2*n-1), k++); return (k); }; \\ Amiram Eldar, Jan 07 2019 after Michel Marcus at A071571 CROSSREFS Identical to A071571 shifted right. Cf. A000005, A000290, A005408, A005179, A003680, A037992, A055079, A048691. Sequence in context: A265014 A262243 A061284 * A071571 A201568 A029898 Adjacent sequences:  A016014 A016015 A016016 * A016018 A016019 A016020 KEYWORD nonn,changed AUTHOR EXTENSIONS Entry revised by N. J. A. Sloane, Aug 14 2005 Offset corrected by David W. Wilson, Dec 27 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 23:05 EST 2019. Contains 319282 sequences. (Running on oeis4.)