login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015528
a(n) = 3*a(n-1) + 10*a(n-2).
14
0, 1, 3, 19, 87, 451, 2223, 11179, 55767, 279091, 1394943, 6975739, 34876647, 174387331, 871928463, 4359658699, 21798260727, 108991369171, 544956714783, 2724783836059, 13623918656007, 68119594328611, 340597969545903
OFFSET
0,3
COMMENTS
The ratio a(n+1)/a(n) converges to 5 as n approaches infinity. - Felix P. Muga II, Mar 10 2014
FORMULA
a(n) = 3*a(n-1) + 10*a(n-2).
a(n) = (5^n - (-2)^n)/7. Binomial transform is A015540. - Paul Barry, Feb 07 2004
G.f.: x/(1-x*(10*x+3)). - Harvey P. Dale, Jan 27 2012
MATHEMATICA
Join[{a=0, b=1}, Table[c=3*b+10*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{3, 10}, {0, 1}, 30] (* or *) CoefficientList[Series[x/(1-x (10x+3)), {x, 0, 29}], x] (* Harvey P. Dale, Jan 27 2012 *)
PROG
(Sage) [lucas_number1(n, 3, -10) for n in range(0, 23)]# Zerinvary Lajos, Apr 22 2009
(Magma) [5^n/7-(-2)^n/7: n in [0..30]]; // Vincenzo Librandi, Aug 23 2011
(PARI) for(n=0, 30, print1((5^n - (-2)^n)/7, ", ")) \\ G. C. Greubel, Jan 01 2018
CROSSREFS
Sequence in context: A373681 A089621 A204256 * A183384 A050863 A376836
KEYWORD
nonn,easy
STATUS
approved