OFFSET
0,4
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 0..500
Index entries for linear recurrences with constant coefficients, signature (6,-1,-24,9).
FORMULA
(1/5)(3^n*Fibonacci(n) - 3*Fibonacci(2n)). - Ralf Stephan, May 14 2004
From R. J. Mathar, Jun 10 2013: (Start)
G.f.: -6*x^3 / ( (x^2-3*x+1)*(9*x^2+3*x-1) ).
a(n) = 6*A014337(n). (End)
MAPLE
with(combinat):A014336:=proc(n)return (1/5)*(3^n*fibonacci(n)-3*fibonacci(2*n)):end:
seq(A014336(n), n=0..22); # Nathaniel Johnston, Apr 18 2011
PROG
(Magma) [(1/5)*(3^n*Fibonacci(n) - 3*Fibonacci(2*n)): n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved