OFFSET
1,1
COMMENTS
Theorem (Sierpinski, 1963): n is a term iff n^2+(n+1)^2 is a composite number. - N. J. A. Sloane, Feb 29 2020
For n > 1, A047219 is a subset of this sequence. This is because n^2 + (n+1)^2 is divisible by 5 if n is (1 or 3) mod 5 (also see A027861). - Dmitry Kamenetsky, Sep 02 2008
From Hermann Stamm-Wilbrandt, Sep 10 2014: (Start)
For n > 0, A212160 is a subset of this sequence (n^2 + (n+1)^2 is divisible by 13 if n == (2 or 10) (mod 13)).
For n >= 0, A212161 is a subset of this sequence (n^2 + (n+1)^2 is divisible by 17 if n == (6 or 10) (mod 17)).
The above are for divisibility by 5, 13, 17; notation (1,3,5), (2,10,13), (6,10,17). Divisibility by p for a and p-a-1; notation (a,p-a-1,p). These are the next tuples: (8,20,29), (15,21,37), (4,36,41), (11,41,53), ... . The corresponding sequences are a subset of this sequence (8,20,37,49,66,78,... for (8,20,29)). These sequences have no entries in the OEIS yet. For any prime of the form 4*k+1 there is exactly one of these tuples/sequences.
For n > 1, A000217 (triangular numbers) is a subset of this sequence (3,6,10,15,...); z=A000217(n), y=z-1, x=n.
For n > 0, A124124(2*n+1)(=A098790(2*n)) is a subset of this sequence (6,37,218,...); z=A124124(2*n+1), x=a(n)-1, y=a(n)+1, a(m) = 6*a(m-1) - a(m-2) + 2, a(0)=0, a(1)=4.
(End)
REFERENCES
Aviezri S. Fraenkel, Diophantine equations involving generalized triangular and tetrahedral numbers, pp. 99-114 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
H. Finner and K. Strassburger, Increasing sample sizes do not necessarily increase the power of UMPU-tests for 2 X 2-tables, Metrika, 54, 77-91, (2001).
Heiko Harborth, Fermat-like binomial equations, Applications of Fibonacci numbers, Proc. 2nd Int. Conf., San Jose/Ca., August 1986, 1-5 (1988).
W. Sierpinski, On triangular numbers which are sums of two smaller triangular numbers, (Polish), Wiadom. Mat. (2) 7 (1963), 27-28. See MR0182602.
MATHEMATICA
Select[Range[100], !PrimeQ[#^2 + (#+1)^2]& ] (* Jean-François Alcover, Jan 17 2013, after Michael Somos *)
CROSSREFS
Complement of A027861. - Michael Somos, Jun 08 2000
KEYWORD
nonn
AUTHOR
Sander van Rijnswou (sander(AT)win.tue.nl)
EXTENSIONS
More terms and references from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 09 2000
STATUS
approved