login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010965
a(n) = binomial(n,12).
12
1, 13, 91, 455, 1820, 6188, 18564, 50388, 125970, 293930, 646646, 1352078, 2704156, 5200300, 9657700, 17383860, 30421755, 51895935, 86493225, 141120525, 225792840, 354817320, 548354040, 834451800, 1251677700, 1852482996, 2707475148, 3910797436, 5586853480
OFFSET
12,2
COMMENTS
Coordination sequence for 12-dimensional cyclotomic lattice Z[zeta_13].
In this sequence only 13 is prime. - Artur Jasinski, Dec 02 2007
LINKS
Matthias Beck and Serkan Hosten, Cyclotomic polytopes and growth series of cyclotomic lattices, arXiv:math/0508136 [math.CO], 2005-2006.
Index entries for linear recurrences with constant coefficients, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).
FORMULA
a(n) = A110555(n+1,12). - Reinhard Zumkeller, Jul 27 2005
a(n+11) = n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)(n+10)(n+11)/12!. - Artur Jasinski, Dec 02 2007, R. J. Mathar, Jul 07 2009
G.f.: x^12/(1-x)^13. - Zerinvary Lajos, Aug 06 2008, R. J. Mathar, Jul 07 2009
From Amiram Eldar, Dec 10 2020: (Start)
Sum_{n>=12} 1/a(n) = 12/11.
Sum_{n>=12} (-1)^n/a(n) = A001787(12)*log(2) - A242091(12)/11! = 24576*log(2) - 3934820/231 = 0.9322955884... (End)
MAPLE
seq(binomial(n, 12), n=12..36); # Zerinvary Lajos, Aug 06 2008
MATHEMATICA
Table[Binomial[n, 12], {n, 12, 50}] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2011 *)
PROG
(Magma) [Binomial(n, 12): n in [12..100]]; // Vincenzo Librandi, Apr 22 2011
(PARI) for(n=12, 50, print1(binomial(n, 12), ", ")) \\ G. C. Greubel, Aug 31 2017
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Some formulas referring to other offsets corrected by R. J. Mathar, Jul 07 2009
STATUS
approved