login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A010022
a(0) = 1, a(n) = 40*n^2 + 2 for n>0.
1
1, 42, 162, 362, 642, 1002, 1442, 1962, 2562, 3242, 4002, 4842, 5762, 6762, 7842, 9002, 10242, 11562, 12962, 14442, 16002, 17642, 19362, 21162, 23042, 25002, 27042, 29162, 31362, 33642, 36002, 38442, 40962, 43562, 46242, 49002, 51842, 54762, 57762, 60842
OFFSET
0,2
COMMENTS
First bisection of A005901. - Bruno Berselli, Feb 07 2012
FORMULA
G.f.: (1+x)*(1+38*x+x^2)/(1-x)^3; a(n) = A008253(4n). - Bruno Berselli, Feb 07 2012
E.g.f.: (x*(x+1)*40+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(5)/40*Pi*coth(Pi*sqrt(5)/10) = 1.03983104279172.. - R. J. Mathar, May 07 2024
a(n) = 2*A158493(n), n>0. - R. J. Mathar, May 07 2024
a(n) = A195317(n)+A195317(n+1) = 2+10*A016742(n), n>0. - R. J. Mathar, May 07 2024
MATHEMATICA
Join[{1}, 40 Range[39]^2 + 2] (* Bruno Berselli, Feb 07 2012 *)
Join[{1}, LinearRecurrence[{3, -3, 1}, {42, 162, 362}, 50]] (* Vincenzo Librandi, Aug 03 2015 *)
PROG
(Magma) [1] cat [40*n^2+2: n in [1..50]]; // Vincenzo Librandi, Aug 03 2015
CROSSREFS
Cf. A206399.
Sequence in context: A092228 A159226 A160329 * A217050 A134385 A232329
KEYWORD
nonn,easy
AUTHOR
STATUS
approved