login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008253
Coordination sequence for diamond.
4
1, 4, 12, 24, 42, 64, 92, 124, 162, 204, 252, 304, 362, 424, 492, 564, 642, 724, 812, 904, 1002, 1104, 1212, 1324, 1442, 1564, 1692, 1824, 1962, 2104, 2252, 2404, 2562, 2724, 2892, 3064, 3242, 3424, 3612, 3804, 4002, 4204, 4412, 4624, 4842, 5064, 5292, 5524
OFFSET
0,2
REFERENCES
Inorganic Crystal Structure Database: Collection Code 9327.
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
R. W. Grosse-Kunstleve, G. O. Brunner and N. J. A. Sloane, Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites, Acta Cryst., A52 (1996), pp. 879-889.
M. O'Keeffe, M. A. Peskov, S. J. Ramsden, and O. M. Yaghi, The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets, Accounts of Chemical Research, (2008), 1782-1789. See p. 1786.
FORMULA
G.f.: (1 + 2*x + 4*x^2 + 2*x^3 + x^4) / ((1 - x)^3*(1 + x)).
a(2*m) = 10*m^2+2, a(2*m+1) = 10*m^2+10*m+4 (N. J. A. Sloane).
Apart from first term, first differences of A007904(n). - Alexander Adamchuk, May 23 2006
a(n) = 2* ( 2 + Sum_{k=1..n-1} floor((5*k+3)/2) ). - Alexander Adamchuk, May 23 2006
From Colin Barker, Mar 21 2017: (Start)
a(n) = (5*n^2 + 4)/2 for n>0 and even.
a(n) = (5*n^2 + 3)/2 for n odd.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>4.
(End)
MATHEMATICA
{1}~Join~Table[2 (2 + Sum[Floor[(5 k + 3)/2], {k, n - 1}]), {n, 50}] (* Alexander Adamchuk, May 23 2006, edited by Michael De Vlieger, May 31 2022 *)
PROG
(PARI) Vec((1 + 2*x + 4*x^2 + 2*x^3 + x^4) / ((1 - x)^3*(1 + x)) + O(x^60)) \\ Colin Barker, Mar 21 2017
CROSSREFS
Sequence in context: A008215 A008232 A008175 * A057308 A301006 A008158
KEYWORD
nonn,easy
STATUS
approved