login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008999
a(n) = 2*a(n-1) + a(n-4).
11
1, 2, 4, 8, 17, 36, 76, 160, 337, 710, 1496, 3152, 6641, 13992, 29480, 62112, 130865, 275722, 580924, 1223960, 2578785, 5433292, 11447508, 24118976, 50816737, 107066766, 225581040, 475281056, 1001378849
OFFSET
0,2
LINKS
Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv:1406.3081 [math.CO], 2014
FORMULA
G.f.: 1/(1-2*x-x^4). - Philippe Deléham, Dec 02 2006
a(n) = Sum_{m=0..n} Sum_{j=0..(n-m)/3} binomial(n-m+(-3)*j,j)*binomial(n-3*j,m). - Vladimir Kruchinin, May 23 2011
O.g.f.: exp( Sum {n>=1} ( (1 + sqrt(1 + x^2))^n + (1 - sqrt(1 + x^2))^n ) * x^n/n ). Cf. A008998. - Peter Bala, Dec 22 2014
MAPLE
A008999 := proc(n) option remember; if n <= 3 then 2^n else 2*A008999(n-1)+A008999(n-4); fi; end;
MATHEMATICA
LinearRecurrence[{2, 0, 0, 1}, {1, 2, 4, 8}, 40] (* Harvey P. Dale, May 09 2012 *)
CoefficientList[Series[1/(1-2x-x^4), {x, 0, 40}], x] (* Vincenzo Librandi, May 09 2012 *)
PROG
(Maxima) a(n):=sum(sum(binomial(n-m+(-3)*j, j)*binomial(n-3*j, m), j, 0, (n-m)/3), m, 0, n); /* Vladimir Kruchinin, May 23 2011 */
(Magma) I:=[1, 2, 4, 8]; [n le 4 select I[n] else 2*Self(n-1)+Self(n-4): n in [1..40]]; // Vincenzo Librandi, May 09 2012
(PARI) my(x='x+O('x^40)); Vec(1/(1-2*x-x^4)) \\ G. C. Greubel, Jun 12 2019
(Sage) (1/(1-2*x-x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 12 2019
(GAP) a:=[1, 2, 4, 8];; for n in [5..40] do a[n]:=2*a[n-1]+a[n-4]; od; a; # G. C. Greubel, Jun 12 2019
CROSSREFS
Cf. A008998.
Sequence in context: A202843 A247297 A292322 * A052903 A308745 A367714
KEYWORD
nonn,easy
STATUS
approved