OFFSET
0,6
COMMENTS
With a different offset, Molien series for 3-dimensional group [2,n] = *22n.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
P. T. Ho, The crossing number of K_{4,n} on the real projective plane, Discr. Math., 304 (2005), pp. 23-33.
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 189.
Eric Weisstein's World of Mathematics, Toroidal Crossing Number.
Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,1,-2,1).
FORMULA
a(n) = a(n-6) + n - 3. - Paul Barry, Jul 14 2004
a(n) = Sum_{j=0..n+2} floor(j/6), a(n-2) = (1/2)*floor(n/6)*(2*n - 4 - 6*floor(n/6)). - Mitch Harris, Sep 08 2008
G.f.: x^4/((1-x)^2*(1-x^6)).
Sum_{n>=4} 1/a(n) = Pi^2/18 - Pi/(2*sqrt(3)) + 49/12. - Amiram Eldar, Aug 14 2022
a(n) = a(-n) = A174709(n+2). - Michael Somos, Dec 05 2023
MAPLE
MATHEMATICA
Floor[Range[0, 70]^2/12] (* G. C. Greubel, Sep 09 2019 *)
PROG
(Magma) a008724:=func< n | Floor(n^2/12) >; [ a008724(n): n in [0..70] ];
(PARI) a(n)=n^2\12 \\ Charles R Greathouse IV, Jul 02 2013
(Sage) [floor(n^2/12) for n in (0..70)] # G. C. Greubel, Sep 09 2019
(GAP) List([0..70], n-> Int(n^2/12) ); # G. C. Greubel, Sep 09 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Minor edits by Klaus Brockhaus, Nov 24 2010
STATUS
approved