login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008724
a(n) = floor(n^2/12).
13
0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 21, 24, 27, 30, 33, 36, 40, 44, 48, 52, 56, 60, 65, 70, 75, 80, 85, 90, 96, 102, 108, 114, 120, 126, 133, 140, 147, 154, 161, 168, 176, 184, 192, 200, 208, 216, 225, 234, 243, 252, 261, 270, 280, 290, 300, 310, 320, 330, 341, 352
OFFSET
0,6
COMMENTS
With a different offset, Molien series for 3-dimensional group [2,n] = *22n.
LINKS
P. T. Ho, The crossing number of K_{4,n} on the real projective plane, Discr. Math., 304 (2005), pp. 23-33.
Eric Weisstein's World of Mathematics, Toroidal Crossing Number.
FORMULA
a(n) = a(n-6) + n - 3. - Paul Barry, Jul 14 2004
a(n) = Sum_{j=0..n+2} floor(j/6), a(n-2) = (1/2)*floor(n/6)*(2*n - 4 - 6*floor(n/6)). - Mitch Harris, Sep 08 2008
G.f.: x^4/((1-x)^2*(1-x^6)).
Sum_{n>=4} 1/a(n) = Pi^2/18 - Pi/(2*sqrt(3)) + 49/12. - Amiram Eldar, Aug 14 2022
a(n) = a(-n) = A174709(n+2). - Michael Somos, Dec 05 2023
MAPLE
A008724 := proc(n)
floor(n^2/12) ;
end proc:
seq(A008724(n), n=0..30) ; # R. J. Mathar, Mar 28 2017
MATHEMATICA
Floor[Range[0, 70]^2/12] (* G. C. Greubel, Sep 09 2019 *)
PROG
(Magma) a008724:=func< n | Floor(n^2/12) >; [ a008724(n): n in [0..70] ];
(PARI) a(n)=n^2\12 \\ Charles R Greathouse IV, Jul 02 2013
(Sage) [floor(n^2/12) for n in (0..70)] # G. C. Greubel, Sep 09 2019
(GAP) List([0..70], n-> Int(n^2/12) ); # G. C. Greubel, Sep 09 2019
CROSSREFS
Sequence in context: A321152 A292983 A174709 * A237118 A112402 A056864
KEYWORD
nonn,easy
EXTENSIONS
Minor edits by Klaus Brockhaus, Nov 24 2010
STATUS
approved