%I #29 Sep 08 2022 08:44:36
%S 1,0,0,0,1,1,1,0,1,1,2,1,2,1,2,2,3,2,3,2,4,3,4,3,5,4,5,4,6,5,7,5,7,6,
%T 8,7,9,7,9,8,11,9,11,9,12,11,13,11,14,12,15,13,16,14,17,15,18,16,19,
%U 17,21,18,21,19,23,21,24,21,25,23,27,24,28,25,29,27,31,28,32,29,34,31
%N Expansion of 1/((1-x^4)*(1-x^5)*(1-x^6)).
%H Vincenzo Librandi, <a href="/A008682/b008682.txt">Table of n, a(n) for n = 0..1000</a>
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=229">Encyclopedia of Combinatorial Structures 229</a>
%H <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,1,1,1,0,0,-1,-1,-1,0,0,0,1).
%p seq(coeff(series(1/mul(1-x^j, j=4..6), x, n+1), x, n), n = 0..90); # _G. C. Greubel_, Sep 09 2019
%t CoefficientList[Series[1/((1-x^4)(1-x^5)(1-x^6)), {x,0,90}], x] (* _Vincenzo Librandi_, Jun 23 2013 *)
%o (PARI) Vec(1/(1-x^4)*(1-x^5)*(1-x^6)+O(x^90)) \\ _Charles R Greathouse IV_, Sep 26 2012
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 90); Coefficients(R!( 1/&*[1-x^j: j in [4..6]] )); // _G. C. Greubel_, Sep 09 2019
%o (Sage)
%o def A008682_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P(1/prod(1-x^j for j in (4..6))).list()
%o A008682_list(90) # _G. C. Greubel_, Sep 09 2019
%K nonn,easy
%O 0,11
%A _N. J. A. Sloane_
%E Typo in name fixed by _Vincenzo Librandi_, Jun 23 2013
%E More terms added from b-file. - _G. C. Greubel_, Sep 09 2019