

A008682


Expansion of 1/((1x^4)*(1x^5)*(1x^6)).


3



1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 2, 4, 3, 4, 3, 5, 4, 5, 4, 6, 5, 7, 5, 7, 6, 8, 7, 9, 7, 9, 8, 11, 9, 11, 9, 12, 11, 13, 11, 14, 12, 15, 13, 16, 14, 17, 15, 18, 16, 19, 17, 21, 18, 21, 19, 23, 21, 24, 21, 25, 23, 27, 24, 28, 25, 29, 27, 31, 28, 32, 29, 34, 31
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,11


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 229
Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,1,1,0,0,1,1,1,0,0,0,1).


MAPLE

seq(coeff(series(1/mul(1x^j, j=4..6), x, n+1), x, n), n = 0..90); # G. C. Greubel, Sep 09 2019


MATHEMATICA

CoefficientList[Series[1/((1x^4)(1x^5)(1x^6)), {x, 0, 90}], x] (* Vincenzo Librandi, Jun 23 2013 *)


PROG

(PARI) Vec(1/(1x^4)*(1x^5)*(1x^6)+O(x^90)) \\ Charles R Greathouse IV, Sep 26 2012
(MAGMA) R<x>:=PowerSeriesRing(Integers(), 90); Coefficients(R!( 1/&*[1x^j: j in [4..6]] )); // G. C. Greubel, Sep 09 2019
(Sage)
def A008682_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(1/prod(1x^j for j in (4..6))).list()
A008682_list(90) # G. C. Greubel, Sep 09 2019


CROSSREFS

Sequence in context: A281543 A287476 A185317 * A112224 A058774 A033101
Adjacent sequences: A008679 A008680 A008681 * A008683 A008684 A008685


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane


EXTENSIONS

Typo in name fixed by Vincenzo Librandi, Jun 23 2013
More terms added from bfile.  G. C. Greubel, Sep 09 2019


STATUS

approved



