login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008613 Molien series for 3-dimensional representation of A_5. 1
1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 4, 1, 5, 1, 6, 1, 7, 2, 8, 2, 9, 3, 10, 4, 11, 4, 13, 5, 14, 6, 15, 7, 17, 8, 18, 9, 20, 10, 22, 11, 23, 13, 25, 14, 27, 15, 29, 17, 31, 18, 33, 20, 35, 22, 37, 23, 40, 25, 42, 27 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,7
COMMENTS
Also arises in connection with Lee weight enumerators of codes over GF(5).
Partitions of n into (any number of) parts 2, 6, and 10, and at most one part 15. - Joerg Arndt, May 15 2011
The Neusel and Smith reference on Example 4 (T. Molien) on the rotation group of an icosahedron is a representation of A_5. - Michael Somos, Feb 01 2018
REFERENCES
D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 101.
H. Derksen and G. Kemper, Computational Invariant Theory, Springer, 2002; p. 92.
G. van der Geer, Hilbert Modular Surfaces, Springer-Verlag, 1988; p. 192.
F. Klein, Lectures on the Icosahedron ..., 2nd Rev. Ed., 1913; reprinted by Dover, NY, 1956; see pp. 236-243.
F. Klein, Werke, II, p. 354.
M. D. Neusel and L. Smith, Invariant Theory of Finite Groups, AMS, 2010, p. 55.
LINKS
Roberto De Maria Nunes Mendes, Symmetries of spherical harmonics, Transactions of the American Mathematical Society 204 (1975): 161-178. See subgroup 109.
J. S. Leon, V. S. Pless and N. J. A. Sloane, Self-dual codes over GF(5), J. Combin. Theory, A 32 (1982), 178-194.
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
F. J. MacWilliams, C. L. Mallows and N. J. A. Sloane, Generalizations of Gleason's theorem on weight enumerators of self-dual codes, IEEE Trans. Inform. Theory, 18 (1972), 794-805; see p. 802, col. 2, foot.
FORMULA
G.f.: (1+x^15)/((1-x^2)*(1-x^6)*(1-x^10)) = ( -1-x+x^3+x^5+x^4-x^8-x^7 ) / ( (1+x+x^2) *(x^4+x^3+x^2+x+1) *(1+x)^2 *(x-1)^3 ).
a(n) = -a(n-1)+a(n-2)+2*a(n-3)+a(n-4)-a(n-7)-2*a(n-8)-a(n-9)+a(n-10)+a (n-11), n>10. - Harvey P. Dale, May 15 2011
a(n) ~ 1/120*n^2. - Ralf Stephan, Apr 29 2014
a(n) = floor((n^2+3*n+105)/120+(n+1)*(-1)^n/8). - Tani Akinari, Sep 30 2014
Euler transform of length 30 sequence [0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1]. - Michael Somos, Sep 30 2014
a(n) = a(-3-n) for all n in Z.
0 = a(n) - a(n+2) - a(n+6) + a(n+8) - [mod(n, 5) == 2] for all n in Z. - Michael Somos, Sep 30 2014
EXAMPLE
G.f. = 1 + x^2 + x^4 + 2*x^6 + 2*x^8 + 3*x^10 + 4*x^12 + 4*x^14 + x^15 + ...
MAPLE
(1+x^15)/((1-x^2)*(1-x^6)*(1-x^10));
MATHEMATICA
CoefficientList[Series[(1+x^15)/((1-x^2)(1-x^6)(1-x^10)), {x, 0, 100}], x] (* or *) LinearRecurrence[{-1, 1, 2, 1, 0, 0, -1, -2, -1, 1, 1}, {1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3}, 100] (* Harvey P. Dale, May 15 2011 *)
a[ n_] := Module[{m = If[ n < 0, -3 - n, n]}, m = If[ OddQ[m], m - 15, m]/2; SeriesCoefficient[ 1 / ((1 - x^1) (1 - x^3) (1 - x^5)), {x, 0, m}]]; (* Michael Somos, Feb 01 2018 *)
LinearRecurrence[{-1, 1, 2, 1, 0, 0, -1, -2, -1, 1, 1}, {1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3}, 80] (* Harvey P. Dale, Jul 09 2019 *)
PROG
(PARI) a(n)=(n^2 + 3*n + 105 + 15*(n+1)*(-1)^n)\120 \\ Charles R Greathouse IV, Feb 10 2017
CROSSREFS
Sequence in context: A025805 A029192 A128619 * A165685 A035457 A005868
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 03:33 EDT 2024. Contains 371767 sequences. (Running on oeis4.)