login
A008509
Positive integers k such that k-th triangular number is palindromic.
17
1, 2, 3, 10, 11, 18, 34, 36, 77, 109, 132, 173, 363, 1111, 1287, 1593, 1833, 2662, 3185, 3369, 3548, 8382, 11088, 18906, 50281, 57166, 102849, 111111, 167053, 179158, 246642, 337650, 342270, 365436, 417972, 1620621, 3240425, 3457634, 3707883
OFFSET
1,2
REFERENCES
Charles W. Trigg, Palindromic Triangular Numbers, J. Rec. Math., 6 (1973), 146-147.
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 93.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..147 (from P. De Geest)
MATHEMATICA
palQ[n_]:= Reverse[x=IntegerDigits[n]]==x; t={}; Do[If[palQ[n*(n+1)/2], AppendTo[t, n]], {n, 4*10^6}]; t (* Jayanta Basu, May 13 2013 *)
Position[Accumulate[Range[371*10^4]], _?PalindromeQ]//Flatten (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 12 2020 *)
PROG
(PARI) ispal(n)=n=digits(n); for(i=1, #n\2, if(n[i]!=n[#n+1-i], return(0))); 1
is(n)=ispal(n*(n+1)/2) \\ Charles R Greathouse IV, May 15 2013
(Magma) [k:k in [1..5000000]| Intseq(Binomial(k+1, 2)) eq Reverse(Intseq(Binomial(k+1, 2)))]; // Marius A. Burtea, Jul 16 2019
CROSSREFS
KEYWORD
nonn,base
STATUS
approved