login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007970 Rhombic numbers. 19
3, 7, 8, 11, 15, 19, 23, 24, 27, 31, 32, 35, 40, 43, 47, 48, 51, 59, 63, 67, 71, 75, 79, 80, 83, 87, 88, 91, 96, 99, 103, 104, 107, 115, 119, 120, 123, 127, 128, 131, 135, 136, 139, 143, 151, 152, 159, 160, 163, 167, 168, 171, 175, 176, 179 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A191856(n) = A007966(a(n)); A191857(n) = A007967(a(n)). - Reinhard Zumkeller, Jun 18 2011

This sequence gives the values d of the Pell equation x^2 - d*y^2 = +1 that have positive fundamental solutions (x0, y0) with odd y0. This was first conjectured and is proved provided Conway's theorem in the link is assumed and the proof of the conjecture stated in A007869, given there in a W. Lang link, is used. - Wolfdieter Lang, Sep 19 2015

For a proof of Conway's theorem on the happy number factorization see the W. Lang link (together with the link given under A007969). - Wolfdieter Lang, Oct 04 2015

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..99

J. H. Conway, On Happy Factorizations, J. Integer Sequences, Vol. 1, 1998, #1.

Wolfdieter Lang, Proof of a Theorem Related to the Happy Number Factorization.

FORMULA

a(n) = A191856(n)*A191857(n); A007968(a(n))=2. - Reinhard Zumkeller, Jun 18 2011

a(n) is in the sequence if a(n) = D*E with positive integers D and E, such that E*U^2 - D*T^2 = 2 has an integer solution with U*T odd (without loss of generality one may take U and T positive). See the Conway link. D and E are given in A191856 and A191857, respectively. - Wolfdieter Lang, Oct 05 2015

MATHEMATICA

r[b_, c_] := (red = Reduce[x > 0 && y > 0 && b*x^2 + 2 == c*y^2, {x, y}, Integers] /. C[1] -> 1 // Simplify; If[Head[red] === Or, First[red], red]); f[n_] := f[n] = If[! IntegerQ[Sqrt[n]], Catch[Do[{b, c} = bc; If[ (r0 = r[b, c]) =!= False, {x0, y0} = {x, y} /. ToRules[r0]; If[OddQ[x0] && OddQ[y0], Throw[n]]]; If[ (r0 = r[c, b]) =!= False, {x0, y0} = {x, y} /. ToRules[r0]; If[OddQ[x0] && OddQ[y0], Throw[n]]], {bc, Union[Sort[{#, n/#}] & /@ Divisors[n]]} ]]]; A007970 = Reap[ Table[ If[f[n] =!= Null, Print[f[n]]; Sow[f[n]]], {n, 1, 180}] ][[2, 1]](* Jean-François Alcover, Jun 26 2012 *)

PROG

(Haskell)

a007970 n = a007970_list !! (n-1)

a007970_list = filter ((== 2) . a007968) [0..]

-- Reinhard Zumkeller, Oct 11 2015

CROSSREFS

Every number belongs to exactly one of A000290, A007969, A007970.

Cf. A007968.

Subsequence of A000037, A002145 is a subsequence.

A263008 (T numbers), A263009 (U numbers).

Sequence in context: A078466 A047528 A069122 * A255342 A134258 A028972

Adjacent sequences:  A007967 A007968 A007969 * A007971 A007972 A007973

KEYWORD

nonn

AUTHOR

J. H. Conway

EXTENSIONS

159 and 175 inserted by Jean-François Alcover, Jun 26 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 1 20:05 EDT 2016. Contains 274324 sequences.