

A007815


Number of triangulations of cyclic 3polytope C(3,n+3).


1



1, 2, 6, 25, 138, 972, 8477, 89405, 1119280, 16384508, 276961252, 5349351298
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


REFERENCES

J. Rambau and F. Santos, The Baues problem for cyclic polytopes I, In "Special issue on Combinatorics of convex polytopes" (K. Fukuda and G. M. Ziegler, eds.), European J. Combin. 21:1 (2000), 6583.
TOPCOM: Triangulations of Point Configurations and Oriented Matroids (ZIB Report 0217). Proceedings of the International Congress of Mathematical Software ICMS 2002.


LINKS

Table of n, a(n) for n=1..12.
C. A. Athanasiadis, J. A. De Loera, V. Reiner and F. Santos, Fiber polytopes for the projections between cyclic polytopes, European Journal of Combinatorics, Volume: 21, Issue: 1, 2000, pp. 19  47.
M. Azaola and F. Santos, The number of triangulations of the cyclic polytope C(n,n4), Discrete Comput. Geom., 27 (2002), 2948.
Michael Joswig, Lars Kastner, New counts for the number of triangulations of cyclic polytopes, arXiv:1804.08029 [math.CO], 2018. See Table 1 p. 7.
J. Rambau, TOPCOM


PROG

(TOPCOM) cyclic 14 3  points2ntriangs v


CROSSREFS

Cf. A028441.
Sequence in context: A255841 A197772 A135881 * A195259 A292748 A178087
Adjacent sequences: A007812 A007813 A007814 * A007816 A007817 A007818


KEYWORD

hard,nonn


AUTHOR

reiner(AT)math.umn.edu (Victor Reiner), edelman(AT)math.umn.edu (Paul Edelman)


EXTENSIONS

a(8) and a(9) computed by J. Rambau.
a(7) corrected and a(10) computed by Jörg Rambau, Sep 19 2006, using the TOPCOM software.
Typo in a(8) fixed and a(11) computed using the TOPCOM software by Jörg Rambau, Aug 11 2011
a(12) (computed by Joswig & Kastner) from Michel Marcus, Apr 23 2018


STATUS

approved



