This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007815 Number of triangulations of cyclic 3-polytope C(3,n+3). 1
1, 2, 6, 25, 138, 972, 8477, 89405, 1119280, 16384508, 276961252, 5349351298 (list; graph; refs; listen; history; text; internal format)



J. Rambau and F. Santos, The Baues problem for cyclic polytopes I, In "Special issue on Combinatorics of convex polytopes" (K. Fukuda and G. M. Ziegler, eds.), European J. Combin. 21:1 (2000), 65-83.

TOPCOM: Triangulations of Point Configurations and Oriented Matroids (ZIB Report 02-17). Proceedings of the International Congress of Mathematical Software ICMS 2002.


Table of n, a(n) for n=1..12.

C. A. Athanasiadis, J. A. De Loera, V. Reiner and F. Santos, Fiber polytopes for the projections between cyclic polytopes, European Journal of Combinatorics, Volume: 21, Issue: 1, 2000, pp. 19 - 47.

M. Azaola and F. Santos, The number of triangulations of the cyclic polytope C(n,n-4), Discrete Comput. Geom., 27 (2002), 29-48.

Michael Joswig, Lars Kastner, New counts for the number of triangulations of cyclic polytopes, arXiv:1804.08029 [math.CO], 2018. See Table 1 p. 7.

J. Rambau, TOPCOM


(TOPCOM) cyclic 14 3 | points2ntriangs -v


Cf. A028441.

Sequence in context: A255841 A197772 A135881 * A195259 A292748 A178087

Adjacent sequences:  A007812 A007813 A007814 * A007816 A007817 A007818




reiner(AT)math.umn.edu (Victor Reiner), edelman(AT)math.umn.edu (Paul Edelman)


a(8) and a(9) computed by J. Rambau.

a(7) corrected and a(10) computed by Jörg Rambau, Sep 19 2006, using the TOPCOM software.

Typo in a(8) fixed and a(11) computed using the TOPCOM software by Jörg Rambau, Aug 11 2011

a(12) (computed by Joswig & Kastner) from Michel Marcus, Apr 23 2018



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 27 00:38 EDT 2018. Contains 304689 sequences. (Running on oeis4.)