OFFSET
0,1
COMMENTS
Also number of f-vectors for simplicial complexes on at most n vertices.
REFERENCES
S. Johnson, Upper bounds for constant weight error correcting codes, Discrete Math., 3 (1972), 109-124.
D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3 (p. 743).
D. E. Knuth, Art of Computer Programming, Vol. 4, Section 7.3, to appear.
S. Linusson, The number of M-sequences and f-vectors, Combinatorica, 19 (1999), 255-266.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Knuth, Email to N. J. A. Sloane, Aug. 1994.
Tamon Stephen and Timothy Yusun, Counting inequivalent monotone Boolean functions, arXiv preprint arXiv:1209.4623 [cs.DS], 2012.
MATHEMATICA
c[ 0, 0 ]=1; c[ 0, 1 ]=1; kap[ 0, 0 ]=0; f[ n_ ] := Block[ {s=2, r, d, k, j}, For[ r=1, r<=n, r++, d=s; k=r; j=0; s=0;
For[ x=0, x<=Binomial[ n, r ], x++, If[ x>=Binomial[ k, r ], k++, 0 ]; kap[ r, x ]=If[ x==0, 0, Binomial[ k-1, r-1 ]+kap[ r-1, x-Binomial[ k-1, r ] ] ];
While[ j<kap[ r, x ], d -= c[ r-1, j ]; j++ ]; c[ r, x ]=d; s += d; ] ]; s ]
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
Entry revised by N. J. A. Sloane, Sep 03 2011
STATUS
approved