This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007698 a(n) = 22*a(n-1) - 3*a(n-2) + 18*a(n-3) - 11*a(n-4). Deviates from A007699 at the 1403rd term. (Formerly M4746) 3
 10, 219, 4796, 105030, 2300104, 50371117, 1103102046, 24157378203, 529034393290, 11585586272312, 253718493496142, 5556306986017175, 121680319386464850, 2664737596978110299, 58356408797678883616 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). J. Wroblewski, personal communication. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993 Jonny Griffiths and Martin Griffiths, Fibonacci-related sequences via iterated QRT maps, Fib. Q., 51 (2013), 218-227. R. H. Hudson, Prime k-th power non-residues, Acta Arithmetica, 23 (1973), 89-106. Index entries for linear recurrences with constant coefficients, signature (22,-3,18,-11). FORMULA O.g.f.: = -x*(x-2)*(5*x^2 + 2*x + 5)/(1 - 22*x + 3*x^2 - 18*x^3 + 11*x^4). - R. J. Mathar, Nov 23 2007 MATHEMATICA LinearRecurrence[{22, -3, 18, -11}, {10, 219, 4796, 105030}, 20] (* Harvey P. Dale, Nov 09 2011 *) CROSSREFS Similar to but different from A007699. Sequence in context: A243476 A294850 A259189 * A007699 A024291 A024292 Adjacent sequences:  A007695 A007696 A007697 * A007699 A007700 A007701 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.