login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007469 Shifts left 2 places under Stirling-2 transform.
(Formerly M1498)
1
1, 1, 1, 2, 5, 16, 66, 343, 2167, 16193, 140919, 1414947, 16258868, 211935996, 3105828560, 50748310068, 918138961643, 18287966027343, 399145502051200, 9505803743367971, 246064556796896554, 6897674469134480653, 208651954748397405264, 6788671409470892058148 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..150

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

N. J. A. Sloane, Transforms

MAPLE

stirtr:= proc(p)

           proc(n) add(p(k)*Stirling2(n, k), k=0..n) end

         end:

a:= proc(n) option remember; `if`(n<3, 1, aa(n-2)) end:

aa:= stirtr(a):

seq(a(n), n=1..25);  # Alois P. Heinz, Jun 22 2012

MATHEMATICA

stirtr[p_] := Function[{n}, Sum[p[k]*StirlingS2[n, k], {k, 0, n}]]; a[n_] := a[n] = If[n<3, 1, aa[n-2]]; aa = stirtr[a]; Table[a[n], {n, 1, 24}] (* Jean-Fran├žois Alcover, Jan 09 2013, translated from Alois P. Heinz's Maple program *)

CROSSREFS

Sequence in context: A268170 A000522 A182290 * A306026 A091139 A084785

Adjacent sequences:  A007466 A007467 A007468 * A007470 A007471 A007472

KEYWORD

nonn,nice,eigen

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 05:13 EDT 2018. Contains 316519 sequences. (Running on oeis4.)