login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007470 Shifts left when Stirling-2 transform applied twice.
(Formerly M2979)
1
1, 1, 3, 14, 97, 934, 11814, 188650, 3698399, 87133235, 2424143590, 78483913829, 2920947798710, 123676552368689, 5904927996501989, 315465738505181316, 18730636267115299571, 1228583480023634860711, 88548597460914590753663, 6979070787198903764535472 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..120

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

N. J. A. Sloane, Transforms

MAPLE

stirtr:= proc(p)

           proc(n) add(p(k)*Stirling2(n, k), k=0..n) end

         end:

a:= proc(n) option remember; `if`(n<2, 1, aa(n-1)) end:

aa:= (stirtr@@2)(a):

seq(a(n), n=1..25);  # Alois P. Heinz, Jun 22 2012

MATHEMATICA

stirtr[p_] := Function[{n}, Sum[p[k]*StirlingS2[n, k], {k, 0, n}]]; a[n_] := a[n] = If[n < 2, 1, aa[n-1]]; aa := stirtr[stirtr[a]]; Table[a[n], {n, 1, 25}] (* Jean-Fran├žois Alcover, Oct 30 2013, translated from Alois P. Heinz's Maple program *)

CROSSREFS

Sequence in context: A295110 A136461 A276747 * A074515 A038051 A132008

Adjacent sequences:  A007467 A007468 A007469 * A007471 A007472 A007473

KEYWORD

nonn,nice,eigen

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 19:08 EDT 2018. Contains 316427 sequences. (Running on oeis4.)