login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A007237
Number of triangles with integer sides and area = n times perimeter.
(Formerly M3878)
11
5, 18, 45, 45, 52, 139, 80, 89, 184, 145, 103, 312, 96, 225, 379, 169, 116, 498, 123, 328, 560, 280, 134, 592, 228, 271, 452, 510, 134, 1036, 144, 280, 639, 339, 597, 1119, 139, 354, 635, 648, 162, 1486, 169, 594, 1215, 354, 186, 1066, 369, 622, 706, 597, 164
OFFSET
1,1
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ray Chandler, Table of n, a(n) for n = 1..5000 (first 300 terms from Zhining Yang)
Lubomir Markov, Heronian Triangles Whose Areas Are Integer Multiples of Their Perimeters, Forum Geometricorum, Volume 7 (2007), 129-135.
Juan V. Savall and Jesus Ferrer, Problem E3408, Amer. Math. Monthly, 99 (1992), 175-176.
FORMULA
a(n) = A120062(2n). - Ray Chandler, Jul 27 2017
EXAMPLE
For n=2, the a(2)=18 solutions whose area is twice its perimeter: (13,14,15) (12,16,20) (15,15,24) (10,24,26) (11,25,30) (18,20,34) (15,26,37) (14,30,40) (10,35,39) (9,40,41) (12,50,58) (33,34,65) (25,51,74) (9,75,78) (11,90,97) (21,85,104) (19,153,170) (18,289,305).
PROG
(PARI) for(k=1, 100, n=0; d=4*k^2; e=3*d; for(b=1, sqrt(e), for(c=2*k, e/b, if(b*c>d && c>=b, f = (b + c)*d / (b * c - d); if(f>=c, a=floor(f); if(a==f, n++))))); print1(n, ", "))
(Python)
from math import sqrt, floor
def A007237(n):
ct = 0; k = 4*n*n
for x in range(1, floor(2*sqrt(3)*n) + 1):
for y in range(max(k//x + 1, x), floor((k+2*n*sqrt(k+x*x))/x)+1):
if k*(x + y)%(x*y - k) == 0: ct += 1
return ct # Ya-Ping Lu, Dec 24 2023
CROSSREFS
Cf. A120062.
Sequence in context: A101105 A037140 A321049 * A327842 A000339 A270944
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(16)-a(50) from Les Reid, Jul 06 2010
STATUS
approved