OFFSET
0,2
COMMENTS
Denominators of coefficients of the Taylor series of sinh(sqrt(2*x))/(sqrt(2*x)). - J. Zurita (jrzurita(AT)inaoep.mx), Dec 01 2007
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..90
L. Carlitz, The inverse of the error function, Pacific J. Math., 13 (1963), 459-470.
R. Flórez and L. Junes, A relation between triangular numbers and prime numbers, Integers 12 (2012), no. 1, 83-96.
Z. Usiskin, Letter to N. J. A. Sloane, Oct. 1991
Eric Weisstein's World of Mathematics, Inverse Erf
FORMULA
sin(x)*cosh(x) = Sum_{n>=0} (-1)^floor(n/2)*x^(2n+1)/a(n). - Benoit Cloitre, Feb 02 2002
a(n) ~ sqrt(Pi)*2^(n+2)*n^(2*n+3/2)/exp(2*n). - Ilya Gutkovskiy, Sep 14 2016
a(n) = Product_{j=1..n} T(2j) (where T(k) is the k-th triangular number). For example: a(3) = T(2)*T(4)*T(6) (that is, 630 = 3*10*21). - Rigoberto Florez, Aug 26 2018
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = sinh(sqrt(2))/sqrt(2).
Sum_{n>=0} (-1)^n/a(n) = sin(sqrt(2))/sqrt(2). (End)
MAPLE
a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]*(2*n-1)*(n-1) od: seq(a[n], n=1..14); # Zerinvary Lajos, Mar 08 2008
MATHEMATICA
Table[(2n+1)!/2^n, {n, 0, 20}] (* Harvey P. Dale, May 13 2011 *)
PROG
(Magma) [Factorial(2*n+1)/2^n: n in [0..25]]; // Vincenzo Librandi, May 14 2011
(PARI) a(n) = (2*n+1)!/2^n; \\ Altug Alkan, Aug 27 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved