login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007019
a(n) = (2n+1)! / 2^n.
(Formerly M3126)
14
1, 3, 30, 630, 22680, 1247400, 97297200, 10216206000, 1389404016000, 237588086736000, 49893498214560000, 12623055048283680000, 3786916514485104000000, 1329207696584271504000000, 539658324813214230624000000, 250941121038144617240160000000, 132496911908140357902804480000000
OFFSET
0,2
COMMENTS
Denominators of coefficients of the Taylor series of sinh(sqrt(2*x))/(sqrt(2*x)). - J. Zurita (jrzurita(AT)inaoep.mx), Dec 01 2007
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. Carlitz, The inverse of the error function, Pacific J. Math., 13 (1963), 459-470.
R. Flórez and L. Junes, A relation between triangular numbers and prime numbers, Integers 12 (2012), no. 1, 83-96.
Eric Weisstein's World of Mathematics, Inverse Erf
FORMULA
sin(x)*cosh(x) = Sum_{n>=0} (-1)^floor(n/2)*x^(2n+1)/a(n). - Benoit Cloitre, Feb 02 2002
a(n) = Product_{k=0..n-1} (A000217(n+1) - A000217(k)). - Anton Zakharov, Sep 14 2016
a(n) ~ sqrt(Pi)*2^(n+2)*n^(2*n+3/2)/exp(2*n). - Ilya Gutkovskiy, Sep 14 2016
a(n) = Product_{j=1..n} T(2j) (where T(k) is the k-th triangular number). For example: a(3) = T(2)*T(4)*T(6) (that is, 630 = 3*10*21). - Rigoberto Florez, Aug 26 2018
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = sinh(sqrt(2))/sqrt(2).
Sum_{n>=0} (-1)^n/a(n) = sin(sqrt(2))/sqrt(2). (End)
MAPLE
a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]*(2*n-1)*(n-1) od: seq(a[n], n=1..14); # Zerinvary Lajos, Mar 08 2008
MATHEMATICA
Table[(2n+1)!/2^n, {n, 0, 20}] (* Harvey P. Dale, May 13 2011 *)
PROG
(Magma) [Factorial(2*n+1)/2^n: n in [0..25]]; // Vincenzo Librandi, May 14 2011
(PARI) a(n) = (2*n+1)!/2^n; \\ Altug Alkan, Aug 27 2018
CROSSREFS
Numerators: A002067, erf(x): A007680.
Sequence in context: A184900 A274797 A092677 * A327021 A186941 A082879
KEYWORD
nonn,easy
STATUS
approved