login
A006515
Mersenne numbers with at most 2 prime factors.
(Formerly M2695)
1
3, 7, 31, 127, 2047, 8191, 131071, 524287, 8388607, 2147483647, 137438953471, 2199023255551, 576460752303423487, 2305843009213693951, 147573952589676412927, 9671406556917033397649407, 618970019642690137449562111, 158456325028528675187087900671
OFFSET
1,1
REFERENCES
John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman and S. S. Wagstaff, Jr., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman and S. S. Wagstaff, Jr., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
C. K. Caldwell, Mersenne primes.
S. S. Wagstaff, Jr., The Cunningham Project.
FORMULA
a(n) = A000225(A006514(n)). - Amiram Eldar, Sep 19 2023
MAPLE
A006515 := proc(n) local i;
i := 2^(ithprime(n))-1:
if (nops(numtheory[factorset](i)) < 3) then
return i
fi: end: seq(A006515(n), n=1..19);
MATHEMATICA
Select[Array[2^Prime[#] - 1 &, 25], PrimeOmega@ # <= 2 &] (* Michael De Vlieger, May 04 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Sean A. Irvine, May 04 2017
STATUS
approved