login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006505
Number of partitions of an n-set into boxes of size >2.
(Formerly M4789)
16
1, 0, 0, 1, 1, 1, 11, 36, 92, 491, 2557, 11353, 60105, 362506, 2169246, 13580815, 91927435, 650078097, 4762023647, 36508923530, 292117087090, 2424048335917, 20847410586719, 185754044235873, 1711253808769653, 16272637428430152
OFFSET
0,7
REFERENCES
J. Riordan, A budget of rhyme scheme counts, pp. 455 - 465 of Second International Conference on Combinatorial Mathematics, New York, April 4-7, 1978. Edited by Allan Gewirtz and Louis V. Quintas. Annals New York Academy of Sciences, 319, 1979.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..579 (terms 0..250 from Alois P. Heinz)
E. A. Enneking and J. C. Ahuja, Generalized Bell numbers, Fib. Quart., 14 (1976), 67-73.
Vladimir Victorovich Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
I. Mezo, Periodicity of the last digits of some combinatorial sequences, arXiv preprint arXiv:1308.1637 [math.CO], 2013.
J. Riordan, Cached copy of paper [With permission]
FORMULA
E.g.f.: exp ( exp x - 1 - x - (1/2)*x^2 ).
a(n) = Sum_{k=1..[n/3]} A059022(n,k), n>=3. - R. J. Mathar, Nov 08 2008
a(n) = n! * sum(m=1..n, sum(k=0..m, k!*(-1)^(m-k) *binomial(m,k) *sum(i=0..n-m, stirling2(i+k,k) *binomial(m-k,n-m-i) *2^(-n+m+i)/ (i+k)!))/m!); a(0)=1. - Vladimir Kruchinin, Feb 01 2011
Define polynomials g_n by g_0=1, g_1=g_2=0, g_3=g_4=g_5=x; g(n) = x*Sum_{i=0..n-3} binomial(n-1,i)*g_i; then a(n) = g_n(1). [Riordan]
a(0) = 1; a(n) = Sum_{k=0..n-3} binomial(n-1,k+2) * a(n-k-3). - Seiichi Manyama, Sep 22 2023
MAPLE
Copy ZL := [ B, {B=Set(Set(Z, card>=3))}, labeled ]: [seq(combstruct[count](ZL, size=n), n=0..25)]; # Zerinvary Lajos, Mar 13 2007
G:={P=Set(Set(Atom, card>=3))}:combstruct[gfsolve](G, unlabeled, x):seq(combstruct[count]([P, G, labeled], size=i), i=0..25); # Zerinvary Lajos, Dec 16 2007
g:=proc(n) option remember; if n=0 then RETURN(1); fi; if n<=2 then RETURN(0); fi; if n<=5 then RETURN(x); fi; expand(x*add(binomial(n-1, i)*g(i), i=0..n-3)); end; [seq(subs(x=1, g(n)), n=0..60)]; # N. J. A. Sloane, Jul 20 2011
MATHEMATICA
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ Exp @ x - 1 - x - x^2 / 2], {x, 0, n}]] (* Michael Somos, Jul 20 2011 *)
a[0] = 1; a[n_] := n!*Sum[Sum[k!*(-1)^(m-k)*Binomial[m, k]*Sum[StirlingS2[i+k, k]* Binomial[m-k, n-m-i]*2^(-n+m+i)/(i+k)!, {i, 0, n-m}], {k, 0, m}]/m!, {m, 1, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 03 2015, after Vladimir Kruchinin *)
Table[Sum[(-1)^j * Binomial[n, j] * BellB[n-j] * 2^((j-1)/2) * HypergeometricU[(1 - j)/2, 3/2, 1/2], {j, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Feb 09 2020 *)
PROG
(PARI) {a(n) = if( n<0, 0, n! * polcoeff( exp( exp( x + x * O(x^n)) - 1 - x - x^2 / 2), n))} /* Michael Somos, Jul 20 2011 */
CROSSREFS
Column k=2 of A293024.
Cf. A293038.
Sequence in context: A160483 A034309 A005000 * A004637 A191296 A052526
KEYWORD
nonn,easy
EXTENSIONS
More terms from Christian G. Bower, Nov 09 2000
Edited by N. J. A. Sloane, Jul 20 2011
STATUS
approved