login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057837 Number of partitions of a set of n elements where the partitions are of size > 3. 8
1, 0, 0, 0, 1, 1, 1, 1, 36, 127, 337, 793, 7525, 48764, 238954, 997790, 6401435, 49107697, 345482807, 2150694855, 14656830110, 116678887407, 978172378669, 7886661080873, 63905475745765, 553437891603452, 5122279358273976 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,9

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..583 (terms 0..250 from Alois P. Heinz)

E. A. Enneking and J. C. Ahuja, Generalized Bell numbers, Fib. Quart., 14 (1976), 67-73.

I. Mezo, Periodicity of the last digits of some combinatorial sequences, arXiv preprint arXiv:1308.1637 [math.CO], 2013 and J. Int. Seq. 17 (2014) #14.1.1.

FORMULA

E.g.f.: exp(exp(x)-1-x-x^2/2-x^3/6).

a(0) = 1; a(n) = Sum_{k=4..n} binomial(n-1,k-1) * a(n-k). - Ilya Gutkovskiy, Feb 09 2020

MAPLE

G:={P=Set(Set(Atom, card>=4))}:combstruct[gfsolve](G, unlabeled, x):seq(combstruct[count]([P, G, labeled], size=i), i=0..26); # Zerinvary Lajos, Dec 16 2007

MATHEMATICA

With[{nn=30}, CoefficientList[Series[Exp[Exp[x]-1-x-x^2/2-x^3/6], {x, 0, nn}], x]Range[0, nn]!] (* Harvey P. Dale, Jun 28 2012 *)

CROSSREFS

Column k=3 of A293024.

Cf. A000110, A000296, A006505, A057814.

Cf. A293039.

Sequence in context: A238037 A238032 A250625 * A007265 A260130 A155708

Adjacent sequences:  A057834 A057835 A057836 * A057838 A057839 A057840

KEYWORD

easy,nice,nonn

AUTHOR

Steven C. Fairgrieve (fsteven(AT)math.wvu.edu), Nov 06 2000

EXTENSIONS

Corrected and extended by Christian G. Bower and James A. Sellers, Nov 09 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 24 06:13 EST 2020. Contains 332199 sequences. (Running on oeis4.)