login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006251 Number of n-element posets which are unions of 2 chains.
(Formerly M1216)
3
1, 1, 2, 4, 10, 26, 75, 225, 711, 2311, 7725, 26313, 91141, 319749, 1134234, 4060128, 14648614, 53208998, 194423568, 714130372, 2635256408, 9764995800, 36320086418, 135548135854, 507434502474, 1904982684106, 7170113287574, 27051804890638, 102287657120454, 387558371409606, 1471212825012499, 5594771416613721 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.45.

LINKS

T. D. Noe, Table of n, a(n) for n=0..200

R. P. Stanley (proposer), Problem 6342, Amer. Math. Monthly, 88 (1981), 294.

Index entries for sequences related to posets

FORMULA

G.f.: 4/(2-2*x+sqrt(1-4*x)+sqrt(1-4*x^2)).

a(n) ~ (2-sqrt(3))*2^(2*n+3)/(6*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 13 2013

Recurrence: (n-1)*n*(n+2)*(n^2 - 8*n + 17)*a(n) = (n-1)*(9*n^4 - 74*n^3 + 159*n^2 + 36*n - 180)*a(n-1) - 2*(n-3)*(n-2)*(n-1)*(8*n^2 - 38*n + 15)*a(n-2) - 4*(n-1)*(14*n^4 - 194*n^3 + 999*n^2 - 2244*n + 1860)*a(n-3) + 8*(22*n^5 - 354*n^4 + 2259*n^3 - 7159*n^2 + 11307*n - 7125)*a(n-4) + 16*(n^5 - 37*n^4 + 392*n^3 - 1787*n^2 + 3681*n - 2775)*a(n-5) - 32*(2*n-9)*(6*n^4 - 100*n^3 + 612*n^2 - 1638*n + 1645)*a(n-6) + 64*(n-6)*(2*n-11)*(2*n-9)*(n^2 - 6*n + 10)*a(n-7). - Vaclav Kotesovec, Aug 13 2013

MATHEMATICA

CoefficientList[Series[4/(2-2x+Sqrt[1-4x]+Sqrt[1-4x^2]), {x, 0, 40}], x] (* Harvey P. Dale, May 12 2011 *)

PROG

(PARI) x='x+O('x^44) /* that many terms */

gf=4/(2-2*x+sqrt(1-4*x)+sqrt(1-4*x^2));

Vec(gf) /* show terms */ /* Joerg Arndt, Apr 20 2011 */

CROSSREFS

Sequence in context: A049143 A089404 A006123 * A049401 A294672 A239077

Adjacent sequences:  A006248 A006249 A006250 * A006252 A006253 A006254

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from James A. Sellers, Aug 21 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 07:44 EST 2020. Contains 338702 sequences. (Running on oeis4.)