login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006251
Number of n-element posets which are unions of 2 chains.
(Formerly M1216)
3
1, 1, 2, 4, 10, 26, 75, 225, 711, 2311, 7725, 26313, 91141, 319749, 1134234, 4060128, 14648614, 53208998, 194423568, 714130372, 2635256408, 9764995800, 36320086418, 135548135854, 507434502474, 1904982684106, 7170113287574, 27051804890638, 102287657120454, 387558371409606, 1471212825012499, 5594771416613721
OFFSET
0,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.45.
LINKS
R. P. Stanley (proposer), Problem 6342, Amer. Math. Monthly, 88 (1981), 294.
FORMULA
G.f.: 4/(2-2*x+sqrt(1-4*x)+sqrt(1-4*x^2)).
a(n) ~ (2-sqrt(3))*2^(2*n+3)/(6*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 13 2013
Recurrence: (n-1)*n*(n+2)*(n^2 - 8*n + 17)*a(n) = (n-1)*(9*n^4 - 74*n^3 + 159*n^2 + 36*n - 180)*a(n-1) - 2*(n-3)*(n-2)*(n-1)*(8*n^2 - 38*n + 15)*a(n-2) - 4*(n-1)*(14*n^4 - 194*n^3 + 999*n^2 - 2244*n + 1860)*a(n-3) + 8*(22*n^5 - 354*n^4 + 2259*n^3 - 7159*n^2 + 11307*n - 7125)*a(n-4) + 16*(n^5 - 37*n^4 + 392*n^3 - 1787*n^2 + 3681*n - 2775)*a(n-5) - 32*(2*n-9)*(6*n^4 - 100*n^3 + 612*n^2 - 1638*n + 1645)*a(n-6) + 64*(n-6)*(2*n-11)*(2*n-9)*(n^2 - 6*n + 10)*a(n-7). - Vaclav Kotesovec, Aug 13 2013
MATHEMATICA
CoefficientList[Series[4/(2-2x+Sqrt[1-4x]+Sqrt[1-4x^2]), {x, 0, 40}], x] (* Harvey P. Dale, May 12 2011 *)
PROG
(PARI) x='x+O('x^44) /* that many terms */
gf=4/(2-2*x+sqrt(1-4*x)+sqrt(1-4*x^2));
Vec(gf) /* show terms */ /* Joerg Arndt, Apr 20 2011 */
CROSSREFS
Sequence in context: A049143 A089404 A006123 * A049401 A294672 A239077
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from James A. Sellers, Aug 21 2000
STATUS
approved