The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006134 a(n) = Sum_{k=0..n} binomial(2*k,k).
(Formerly M2811)
75

%I M2811 #159 Feb 27 2024 07:06:33

%S 1,3,9,29,99,351,1275,4707,17577,66197,250953,956385,3660541,14061141,

%T 54177741,209295261,810375651,3143981871,12219117171,47564380971,

%U 185410909791,723668784231,2827767747951,11061198475551,43308802158651

%N a(n) = Sum_{k=0..n} binomial(2*k,k).

%C The expression a(n) = B^n*Sum_{ k=0..n } binomial(2*k,k)/B^k gives A006134 for B=1, A082590 (B=2), A132310 (B=3), A002457 (B=4), A144635 (B=5). - _N. J. A. Sloane_, Jan 21 2009

%C T(n+1,1) from table A045912 of characteristic polynomial of negative Pascal matrix. - _Michael Somos_, Jul 24 2002

%C p divides a((p-3)/2) for p=11, 13, 23, 37, 47, 59, 61, 71, 73, 83, 97, 107, 109, 131, 157, 167, ...: A097933. Also primes congruent to {1, 2, 3, 11} mod 12 or primes p such that 3 is a square mod p (excluding 2 and 3) A038874. - _Alexander Adamchuk_, Jul 05 2006

%C Partial sums of the even central binomial coefficients. For p prime >=5, a(p-1) = 1 or -1 (mod p) according as p = 1 or -1 (mod 3) (see Pan and Sun link). - _David Callan_, Nov 29 2007

%C First column of triangle A187887. - _Michel Marcus_, Jun 23 2013

%C From _Gus Wiseman_, Apr 20 2023: (Start)

%C Also the number of nonempty subsets of {1,...,2n+1} with median n+1, where the median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). The odd/even-length cases are A000984 and A006134(n-1). For example, the a(0) = 1 through a(2) = 9 subsets are:

%C {1} {2} {3}

%C {1,3} {1,5}

%C {1,2,3} {2,4}

%C {1,3,4}

%C {1,3,5}

%C {2,3,4}

%C {2,3,5}

%C {1,2,4,5}

%C {1,2,3,4,5}

%C Alternatively, a(n-1) is the number of nonempty subsets of {1,...,2n-1} with median n.

%C (End)

%D Marko Petkovsek, Herbert Wilf and Doron Zeilberger, A=B, A K Peters, 1996, p. 22.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A006134/b006134.txt">Table of n, a(n) for n = 0..1000</a>

%H Moa Apagodu and Doron Zeilberger, <a href="http://arxiv.org/abs/1606.03351">Using the "Freshman's Dream" to Prove Combinatorial Congruences</a>, arXiv:1606.03351 [math.CO], 2016. Also Amer. Math. Monthly. 124 (2017), 597-608.

%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Barry/barry321.html">Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices</a>, Journal of Integer Sequences, 19 (2016), Article 16.3.5.

%H Hacène Belbachir, Abdelghani Mehdaoui and László Szalay, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL22/Szalay/szalay42.html">Diagonal Sums in the Pascal Pyramid, II: Applications</a>, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.

%H J. Hietarinta, T. Mase and R. Willox, <a href="https://arxiv.org/abs/1909.03232">Algebraic entropy computations for lattice equations: why initial value problems do matter</a>, arXiv:1909.03232 [nlin.SI], 2019.

%H Neelam J. Kumar, <a href="http://dx.doi.org/10.4236/jamp.2016.41020">N-Summet-k and Its Application in the Construction of Pascal Triangle and Pascal Matrix</a>, Journal of Applied Mathematics and Physics, 4 (2016), 169-177.

%H W. F. Lunnon, <a href="http://www.fq.math.ca/Scanned/15-3/lunnon.pdf">The Pascal matrix</a>, Fib. Quart., Vol. 15 (1977), pp. 201-204.

%H Kim McInturff and Rob Pratt, <a href="http://www.jstor.org/stable/25653754">Representations of a generating function</a>, The College Mathematics Journal, 40 (2009), 294-296.

%H Hao Pan and Zhi-Wei Sun, <a href="http://arxiv.org/abs/math/0509648">A combinatorial identity with application to Catalan numbers</a>, arXiv:math/0509648 [math.CO], 2005-2006.

%H Peter Paule, <a href="http://projecteuclid.org/euclid.em/1047565639">A proof of a conjecture of Knuth</a>. Experiment. Math. 5, No. 2 (1996), 83-89. MR1418955 (97k:33004).

%H Mehtaab Sawhney, proposer, <a href="http://www.jstor.org/stable/10.4169/college.math.j.48.3.219">Problem 1102</a> Problems and Solutions, The College Mathematics Journal, Vol. 48, No. 3 (May 2017), pp. 219-225, p. 219; Radouan Boukharfane, <a href="https://www.jstor.org/stable/48661695">A binomial identity</a>, Solution to Problem 1102, ibid., Vol. 49, No. 3 (May 2018), pp. 225-226.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Pascal_matrix">Pascal Matrix</a>.

%F From _Alexander Adamchuk_, Jul 05 2006: (Start)

%F a(n) = Sum_{k=0..n} (2k)!/(k!)^2.

%F a(n) = A066796(n) + 1, n>0. (End)

%F G.f.: 1/((1-x)*sqrt(1-4*x)).

%F D-finite with recurrence: (n+2)*a(n+2) - (5*n+8)*a(n+1) + 2*(2*n+3)*a(n) = 0. - _Emanuele Munarini_, Mar 15 2011

%F a(n) = C(2n,n) * Sum_{k=0..2n} (-1)^k*trinomial(n,k)/C(2n,k) where trinomial(n,k) = [x^k] (1 + x + x^2)^n. E.g. a(2) = C(4,2)*(1/1 - 2/4 + 3/6 - 2/4 + 1/1) = 6*(3/2) = 9 ; a(3) = C(6,3)*(1/1 - 3/6 + 6/15 - 7/20 + 6/15 - 3/6 + 1/1) = 20*(29/20) = 29. - _Paul D. Hanna_, Aug 21 2007

%F From _Alzhekeyev Ascar M_, Jan 19 2012: (Start)

%F a(n) = Sum_{ k=0..n } b(k)*binomial(n+k,k), where b(k)=0 for n-k == 2 (mod 3), b(k)=1 for n-k == 0 or 1 (mod 6), and b(k)=-1 for n-k== 3 or 4 (mod 6).

%F a(n) = Sum_{ k=0..n-1 } c(k)*binomial(2n,k) + binomial(2n,n), where c(k)=0 for n-k == 0 (mod 3), c(k)=1 for n-k== 1 (mod 3), and c(k)=-1 for n-k==2 (mod 3). (End)

%F a(n) ~ 2^(2*n+2)/(3*sqrt(Pi*n)). - _Vaclav Kotesovec_, Nov 06 2012

%F G.f.: G(0)/2/(1-x), where G(k)= 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) + (k+1)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 24 2013

%F G.f.: G(0)/(1-x), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2) - x*(4*k+2)*(4*k+3)/(x*(4*k+3) + (k+1)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 26 2013

%F a(n) = Sum_{k = 0..n} binomial(n+1,k+1)*A002426(k). - _Peter Bala_, Oct 29 2015

%F a(n) = -binomial(2*(n+1),n+1)*hypergeom([1,n+3/2],[n+2], 4) - i/sqrt(3). - _Peter Luschny_, Oct 29 2015

%F a(n) = binomial(2*n, n)*hypergeom([1,-n], [1/2-n], 1/4). - _Peter Luschny_, Mar 16 2016

%F From _Gus Wiseman_, Apr 20 2023: (Start)

%F a(n+1) - a(n) = A000984(n).

%F a(n) = A013580(2n+1,n+1) (conjectured).

%F a(n) = 2*A024718(n) - 1.

%F a(n) = A100066(2n+1).

%F a(n) = A231147(2n+1,n+1) (conjectured). (End)

%F a(n) = Sum_{k=0..floor(n/3)} 3^(n-3*k) * binomial(n-k,2*k) * binomial(2*k,k) (Sawhney, 2017). - _Amiram Eldar_, Feb 24 2024

%F From _Mélika Tebni_, Feb 27 2024: (Start)

%F Limit_{n -> oo} a(n) / A281593(n) = 2.

%F E.g.f.: exp(2*x)*BesselI(0,2*x) + exp(x)*integral( BesselI(0,2*x)*exp(x) ) dx. (End)

%e 1 + 3*x + 9*x^2 + 29*x^3 + 99*x^4 + 351*x^5 + 1275*x^6 + 4707*x^7 + 17577*x^8 + ...

%p A006134 := proc(n) sum(binomial(2*k,k),k=0..n); end;

%p a := n -> -binomial(2*(n+1),n+1)*hypergeom([1,n+3/2],[n+2], 4) - I/sqrt(3):

%p seq(simplify(a(n)), n=0..24); # _Peter Luschny_, Oct 29 2015

%p # third program:

%p A006134 := series(exp(2*x)*BesselI(0, 2*x) + exp(x)*int(BesselI(0, 2*x)*exp(x), x), x = 0, 25):

%p seq(n!*coeff(A006134, x, n), n=0..24); # _Mélika Tebni_, Feb 27 2024

%t Table[Sum[((2k)!/(k!)^2),{k,0,n}], {n,0,50}] (* _Alexander Adamchuk_, Jul 05 2006 *)

%t a[ n_] := (4/3) Binomial[ 2 n, n] Hypergeometric2F1[ 1/2, 1, -n + 1/2, -1/3] (* _Michael Somos_, Jun 20 2012 *)

%t Accumulate[Table[Binomial[2n,n],{n,0,30}]] (* _Harvey P. Dale_, Jan 11 2015 *)

%t CoefficientList[Series[1/((1 - x) Sqrt[1 - 4 x]), {x, 0, 33}], x] (* _Vincenzo Librandi_, Aug 13 2015 *)

%o (MATLAB) n=10; x=pascal(n); trace(x)

%o (PARI) {a(n) = if( n<0, 0, polcoeff( charpoly( matrix( n+1, n+1, i, j, -binomial( i+j-2, i-1))), 1))} \\ _Michael Somos_, Jul 10 2002

%o (PARI) {a(n)=binomial(2*n,n)*sum(k=0,2*n,(-1)^k*polcoeff((1+x+x^2)^n,k)/binomial(2*n,k))} \\ _Paul D. Hanna_, Aug 21 2007

%o (PARI) my(x='x+O('x^100)); Vec(1/((1-x)*sqrt(1-4*x))) \\ _Altug Alkan_, Oct 29 2015

%o (Maxima) makelist(sum(binomial(2*k,k),k,0,n),n,0,12); \\ _Emanuele Munarini_, Mar 15 2011

%o (Magma) &cat[ [&+[ Binomial(2*k, k): k in [0..n]]]: n in [0..30]]; // _Vincenzo Librandi_, Aug 13 2015

%Y Cf. A000984 (first differences), A097933, A038874, A132310.

%Y Cf. A006135, A006136, A045912.

%Y Equals A066796 + 1.

%Y Odd bisection of A100066.

%Y Row sums of A361654 (also column k = 2).

%Y A007318 counts subsets by length, A231147 by median, A013580 by integer median.

%Y A359893 and A359901 count partitions by median.

%Y Cf. A000975, A024718, A057552, A079309, A327481.

%K nonn

%O 0,2

%A _N. J. A. Sloane_

%E Simpler definition from _Alexander Adamchuk_, Jul 05 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 05:24 EDT 2024. Contains 372498 sequences. (Running on oeis4.)