This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005826 Worst case of a Jacobi symbol algorithm. (Formerly M3961) 2
 1, 5, 31, 141, 659, 3005, 13739, 62669, 285931, 1304285, 5949691, 27139821, 123799979, 564720125, 2576001179, 11750565389, 53600825611, 244502996765, 1115313334651, 5087560678701, 23207176728299, 105860762282045 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. J. Shallit, On the worst case of three algorithms for computing the Jacobi symbol, J. Symbolic Comput. 10 (1990), no. 6, 593-610, Variable S_n conjecture 6.2. Index entries for linear recurrences with constant coefficients, signature (5, 0, -10, 4). FORMULA a(n) = 5*a(n-1) - 10a(n-3) + 4a(n-4) by definition [R. J. Mathar, Mar 11 2009] MAPLE A005826:=(-1-6*z**2+4*z**3)/(2*z**2-1)/(1-5*z+2*z**2); [Conjectured (correctly) by Simon Plouffe in his 1992 dissertation.] CROSSREFS Sequence in context: A184446 A077719 A235462 * A293716 A294692 A047109 Adjacent sequences:  A005823 A005824 A005825 * A005827 A005828 A005829 KEYWORD nonn AUTHOR EXTENSIONS More terms from L. Edson Jeffery, Dec 07 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 01:20 EST 2018. Contains 318141 sequences. (Running on oeis4.)