login
A005570
Number of walks on cubic lattice.
(Formerly M5038)
2
17, 50, 99, 164, 245, 342, 455, 584, 729, 890, 1067, 1260, 1469, 1694, 1935, 2192, 2465, 2754, 3059, 3380, 3717, 4070, 4439, 4824, 5225, 5642, 6075, 6524, 6989, 7470, 7967, 8480, 9009, 9554, 10115, 10692, 11285, 11894, 12519, 13160, 13817, 14490, 15179, 15884, 16605
OFFSET
1,1
COMMENTS
Partial sums of A158057.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Richard K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article 00.1.6 (see figure 7).
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
FORMULA
a(n) = 8*n^2 + 9*n.
G.f.: (17-x)/(1-x)^3. Simon Plouffe in his 1992 dissertation.
a(n) = 16*A000217(n) + n. - Jon Perry, Nov 05 2014
Sum_{n>=1} 1/a(n) = 80/81 +Psi(1/8)/9+gamma/9 = 0.11973.. see A001620 and A250129. - R. J. Mathar, May 30 2022
Sum_{n>=1} 1/a(n) = 80/81 - (sqrt(2)+1)*Pi/18 - log(1+sqrt(2))*sqrt(2)/9 -4*log(2)/9. - Amiram Eldar, Sep 10 2022
From Elmo R. Oliveira, Jan 28 2025: (Start)
E.g.f.: exp(x)*x*(17 + 8*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
MATHEMATICA
CoefficientList[Series[(17 - x) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 05 2014 *)
PROG
(PARI) Vec((17-x)/(1-x)^3 + O(x^50)) \\ Michel Marcus, Nov 05 2014
(Magma) [8*n^2 + 9*n : n in [1..40]]; // Vincenzo Librandi, Nov 05 2014
CROSSREFS
KEYWORD
nonn,walk,easy,changed
EXTENSIONS
Formula and more terms from Jeffrey Shallit, Aug 15 1995
STATUS
approved