login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A005565
Number of walks on square lattice.
(Formerly M5087)
4
20, 75, 189, 392, 720, 1215, 1925, 2904, 4212, 5915, 8085, 10800, 14144, 18207, 23085, 28880, 35700, 43659, 52877, 63480, 75600, 89375, 104949, 122472, 142100, 163995, 188325, 215264, 244992, 277695, 313565, 352800, 395604, 442187, 492765, 547560, 606800
OFFSET
0,1
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
a(n) = 1/4*(n^4+14n^3+69n^2+136n+80). G.f.: (20-25x+14x^2-3x^3)/(1-x)^5. - Ralf Stephan, Apr 23 2004
a(n) = binomial(n+4,2)^2 - binomial(n+4,1)^2. - Gary Detlefs, Nov 22 2011
Using two consecutive triangular numbers t(n) and t(n+1), starting at n=3, compute the determinant of a 2 X 2 matrix with the first row t(n), t(n+1) and the second row t(n+1), 2*t(n+1). This gives (n+1)^2*(n-2)*(n+2)/4 = a(n-3). - J. M. Bergot, May 17 2012
MAPLE
seq(add (k^3-n^2, k =0..n), n=4..28 ); # Zerinvary Lajos, Aug 26 2007
A005565:=(-20+25*z-14*z**2+3*z**3)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
CoefficientList[Series[(20-25x+14x^2-3x^3)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 24 2012 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {20, 75, 189, 392, 720}, 40] (* Harvey P. Dale, Dec 04 2020 *)
PROG
(PARI) a(n)=(n^4+14*n^3+69*n^2+136*n)/4+20 \\ Charles R Greathouse IV, Nov 22 2011
(Magma) [1/4*(n^4+14*n^3+69*n^2+136*n+80): n in [0..40]]; // Vincenzo Librandi, May 24 2012
CROSSREFS
Sequence in context: A237617 A000529 A238027 * A320484 A066126 A228025
KEYWORD
nonn,walk,easy
STATUS
approved