login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005393
Leading term of Stirling's approximation to n!, sqrt(2*Pi)*n^(n+(1/2))/e^n, rounded down.
2
0, 0, 1, 5, 23, 118, 710, 4980, 39902, 359536, 3598695, 39615625, 475687486, 6187239475, 86661001740, 1300430722199, 20814114415223, 353948328666100, 6372804626194309, 121112786592293963, 2422786846761133393, 50888617325509644403
OFFSET
0,4
FORMULA
a(n) = floor(sqrt(2*Pi)*n^(n+(1/2))/e^n). - Wesley Ivan Hurt, Jun 11 2016
MAPLE
A005393:=n->floor(sqrt(2*Pi)*n^(n+(1/2))/exp(1)^n): seq(A005393(n), n=0..30); # Wesley Ivan Hurt, Jun 11 2016
MATHEMATICA
Table[Floor[Sqrt[2*Pi]*n^(n + 1/2)*Exp[-n]], {n, 0, 50}] (* G. C. Greubel, Jun 11 2016 *)
PROG
(PARI) for(n=0, 50, print1(floor(sqrt(2*Pi)*n^(n+(1/2))*exp(-n)), ", ")) \\ G. C. Greubel, Aug 16 2018
(Magma) R:= RealField(); [Floor(Sqrt(2*Pi(R))*n^(n+(1/2))/Exp(n)): n in [0..50]]; // G. C. Greubel, Aug 16 2018
CROSSREFS
Cf. (rounded up) A005395.
Sequence in context: A073596 A167248 A321798 * A193704 A294356 A162815
KEYWORD
nonn,easy
EXTENSIONS
a(12) onwards corrected by Sean A. Irvine, Jun 11 2016
STATUS
approved