login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005345
Number of elements of a free idempotent monoid on n letters.
(Formerly M1820)
3
1, 2, 7, 160, 332381, 2751884514766, 272622932796281408879065987, 3641839910835401567626683593436003894250931310990279692, 848831867913830760986671126293000918118297635181600248839480614255059539078136221019132415247551725144817958905
OFFSET
0,2
COMMENTS
An idempotent monoid satisfies the equation xx=x for any element x.
A squarefree word may be equivalent to a smaller or larger word as a consequence of the idempotent equation.
REFERENCES
M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 32.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Morgan Rogers, From free idempotent monoids to free multiplicatively idempotent rigs, arXiv:2408.17440 [math.RA], 2024. See pp. 21, 23.
Eric Weisstein's World of Mathematics, Monoid.
Eric Weisstein's World of Mathematics, Free Idempotent Monoid
FORMULA
a(n) = Sum_{k=0..n} (C(n, k) Prod_{i=1..k} (k-i+1)^(2^i)).
Binomial transform of A030450. - Michael Somos, Oct 22 2006
MATHEMATICA
Array[Sum[Binomial[#, k]* Product[(k - i + 1)^(2^i), {i, k}], {k, 0, #}] &, 10, 0] (* Michael De Vlieger, Sep 05 2024 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*prod(i=1, k, (k-i+1)^2^i))} /* Michael Somos, Oct 22 2006 */
CROSSREFS
A030449(n) = a(n) - 1.
Sequence in context: A207139 A064607 A182974 * A174366 A177798 A077746
KEYWORD
nonn,easy
EXTENSIONS
One more term from Gabriel Cunningham (gcasey(AT)mit.edu), Nov 14 2004
STATUS
approved