login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030450 Related to number of elements in the free band (idempotent semigroup) on n generators. 6
1, 1, 4, 144, 331776, 2751882854400, 272622932796264897576960000, 3641839910835401567626683591527643364677019238400000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Continued square root 2 = sqrt(1 + sqrt(1 + sqrt(4 + sqrt(144 + ...)))) = sqrt(1 + sqrt(1 + 2*sqrt(1 + 3*sqrt(1 + 4*sqrt(1 + ...)))) [S. Ramanujan]. - Michael Somos, Dec 03 2017

REFERENCES

J. Howie, Fundamentals of Semigroup Theory, Oxford University Press 1995, p. 123.

LINKS

Table of n, a(n) for n=0..7.

Index entries for sequences related to semigroups

FORMULA

Binomial transform is A005345. - Michael Somos, Oct 22 2006

a(n) = (n*a(n-1))^2 if n > 0. a(0)=1. - Michael Somos, Oct 22 2006

a(n) = Product_{i=1..n} (n-i+1)^(2^i).

MATHEMATICA

s=1; lst={}; Do[AppendTo[lst, s*=s*=n], {n, 9}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 20 2009 *)

Fold[Append[#1, (#2 Last[#1])^2] &, {1}, Range@ 7] (* Michael De Vlieger, Dec 03 2017 *)

PROG

(PARI) {a(n) = if(n<0, 0, prod(i=1, n, (n-i+1)^2^i))}; /* Michael Somos, Oct 22 2006 */

(Sage)

def A030450(n) :

   return prod((n-i+1)^(2^i) for i in (1..n))

[A030450(n) for n in (0..9)] # Jani Melik, Jun 06 2015

CROSSREFS

Cf. A030449.

A052129(n) = n*a(n-1) if n > 0.

Sequence in context: A203424 A055209 A239350 * A041629 A278845 A159197

Adjacent sequences:  A030447 A030448 A030449 * A030451 A030452 A030453

KEYWORD

nonn

AUTHOR

Marcel Jackson (marcel_j(AT)hilbert.maths.utas.edu.au)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 18:36 EDT 2018. Contains 316529 sequences. (Running on oeis4.)