login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004738 Concatenation of sequences (1,2,..,n-1,n,n-1,..,2) for n >= 2. 12
1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 10, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Also concatenation of sequences n,n-1,...,2,1,2,...,n-1,n.

Table T(n,k) n, k > 0, T(n,k)=n-k+1, if n>=k, T(n,k)=k-n+1, if n < k.  Table read by sides of squares from T(1,n) to T(n,n), then from T(n,n) to T(n,1). General case A209301. Let m be natural number. The first column of the table T(n,1) is the sequence of the natural numbers A000027. In all columns with number k (k > 1) the segment with the length of (k-1): {m+k-2, m+k-3, ..., m}  shifts the sequence A000027. For m=1 the result is A004739, for m=2 the result is A004738, for m=3 the result is A209301. - Boris Putievskiy, Jan 24 2013

REFERENCES

F. Smarandache, "Numerical Sequences", University of Craiova, 1975; [ See Arizona State University, Special Collection, Tempe, AZ, USA ].

LINKS

Table of n, a(n) for n=1..103.

Boris Putievskiy, Transformations [Of] Integer Sequences And Pairing Functions, arXiv preprint arXiv:1212.2732, 2012.

F. Smarandache, Collected Papers, Vol. II

F. Smarandache, Sequences of Numbers Involved in Unsolved Problems.

Eric Weisstein's World of Mathematics, Smarandache Sequences

FORMULA

a(n)= floor(sqrt(n)+1/2)+1-abs(n-1-(floor(sqrt(n)+1/2))^2) - Benoit Cloitre, Feb 08 2003

From Boris Putievskiy, Jan 24 2013: (Start)

For the general case, a(n) = m*v+(2*v-1)*(t*t-n)+t, where t = floor((sqrt(n)-1/2)+1 and v = floor((n-1)/t)-t+1.

For m=2, a(n) = 2*v+(2*v-1)*(t*t-n)+t, where t = floor((sqrt(n)-1/2)+1 and v = floor((n-1)/t)-t+1. (End)

EXAMPLE

From Boris Putievskiy, Jan 24 2013: (Start)

The start of the sequence as table:

1..2..3..4..5..6..7...

2..1..2..3..4..5..6...

3..2..1..2..3..4..5...

4..3..2..1..2..3..4...

5..4..3..2..1..2..3...

6..5..4..3..2..1..2...

7..6..5..4..3..2..1...

. . .

The start of the sequence as triangle array read by rows:

1;

2,1,2;

3,2,1,2,3;

4,3,2,1,2,3,4;

5,4,3,2,1,2,3,4,5;

6,5,4,3,2,1,2,3,4,5,6;

7,6,5,4,3,2,1,2,3,4,5,6,7;

. . .

Row number r contains 2*r -1 numbers: r, r-1,...1,2,...r. (End)

PROG

(PARI) a(n)= floor(sqrt(n)+1/2)+1-abs(n-1-(floor(sqrt(n)+1/2)-1/2)^2)

CROSSREFS

Cf. A004737, A004739, A187760, A079813, A209301.

Sequence in context: A088696 A257249 A267108 * A043554 A005811 A008342

Adjacent sequences:  A004735 A004736 A004737 * A004739 A004740 A004741

KEYWORD

nonn,easy

AUTHOR

R. Muller

EXTENSIONS

More terms from Patrick De Geest, Jun 15 1998.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 10:41 EST 2017. Contains 294963 sequences.