login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003772
Number of Hamiltonian paths in K_4 X P_n.
1
12, 408, 6648, 90672, 1103088, 12509256, 135409896, 1419480288, 14545113696, 146607233784, 1460033574744, 14411647534224, 141321405768144, 1379055205227432, 13408489143753672, 130019327919243840, 1258252792162873152, 12158637295940721240
OFFSET
1,1
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
FORMULA
Faase gives a 6-term linear recurrence on his web page:
a(1) = 12,
a(2) = 408,
a(3) = 6648,
a(4) = 90672,
a(5) = 1103088,
a(6) = 12509256,
a(7) = 135409896 and
a(n) = 23a(n-1) - 173a(n-2) + 421a(n-3) + 62a(n-4) - 132a(n-5) + 24a(n-6).
G.f.: 12*x*(24*x^6-164*x^5+398*x^4-275*x^3+55*x^2-11*x-1)/((2*x^2-7*x+1)^2*(6*x^2+9*x-1)). [Colin Barker, Aug 30 2012]
MATHEMATICA
CoefficientList[Series[12(24 x^6 - 164 x^5 + 398 x^4 - 275 x^3 + 55 x^2 - 11 x - 1)/((2 x^2 - 7 x + 1)^2 (6 x^2 + 9 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 14 2013 *)
LinearRecurrence[{23, -173, 421, 62, -132, 24}, {12, 408, 6648, 90672, 1103088, 12509256, 135409896}, 20] (* Harvey P. Dale, Jun 11 2019 *)
CROSSREFS
Sequence in context: A202788 A285028 A292784 * A211078 A299382 A197038
KEYWORD
nonn,easy
EXTENSIONS
Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009
STATUS
approved